Authors

A.J. van der Schaft, S. Rao, B. Jayawardhana

Abstract

In this paper we elaborate on the mathematical formulation of mass action chemical reaction networks as recently given in van der Schaft, Rao, Jayawardhana (2012). We show how the reference chemical potentials define a specific thermodynamical equilibrium, and we discuss the port-Hamiltonian representation of the formulation. This leads to the network interpretation as a number of energy-storing elements (corresponding to the chemical complexes), together with a nonlinear energy-dissipating relation corresponding to the reactions with associated conductances for the edges of the graph of complexes. The resulting system cannot be put into standard Brayton-Moser gradient system form, but it does allow a generalized gradient system representation with respect to the Gibbs’ free energy.

Keywords

complex graph, gradient systems, laplacian matrix, port-hamiltonian systems, stoichiometry

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2013
  • Volume: 46
  • Issue: 14
  • Pages: 24–29
  • Publisher: Elsevier BV
  • DOI: 10.3182/20130714-3-fr-4040.00001
  • Note: 1st IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory

BibTeX

@article{van_der_Schaft_2013,
  title={{On the network thermodynamics of mass action chemical reaction networks}},
  volume={46},
  ISSN={1474-6670},
  DOI={10.3182/20130714-3-fr-4040.00001},
  number={14},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={van der Schaft, A.J. and Rao, S. and Jayawardhana, B.},
  year={2013},
  pages={24--29}
}

Download the bib file

References

  • Akhilesh, R., Narasimhan, A. & Balaji, C. Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. International Journal of Heat and Mass Transfer 48, 2759–2770 (2005) – 10.1016/j.ijheatmasstransfer.2005.01.032
  • Alexiades, (1993)
  • (1993)
  • Hale, (1971)
  • Mills, A., Farid, M., Selman, J. R. & Al-Hallaj, S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering 26, 1652–1661 (2006) – 10.1016/j.applthermaleng.2005.11.022
  • Pattison, R. C. & Baldea, M. A thermal‐flywheel approach to distributed temperature control in microchannel reactors. AIChE Journal 59, 2051–2061 (2013) – 10.1002/aic.13991
  • Reay, (2008)
  • Sarı, A. & Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering 27, 1271–1277 (2007) – 10.1016/j.applthermaleng.2006.11.004
  • Sharma, A., Tyagi, V. V., Chen, C. R. & Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13, 318–345 (2009) – 10.1016/j.rser.2007.10.005
  • Wang, S. & Baldea, M. Temperature Control and Optimal Energy Management using Latent Energy Storage. Ind. Eng. Chem. Res. 52, 3247–3257 (2013) – 10.1021/ie303073n