On the contact Hamiltonian functions of conservative contact systems
Authors
Abstract
The dynamics of irreversible thermodynamic systems have been expressed in terms of conservative contact systems where contact vector fields are generated by contact Hamiltonian functions defined on the Thermodynamic Phase Space (TPS). In this paper, we first emphasize the importance of both the Gibbs relation and the Gibbs–Duhem relation of the entropy or energy contact form in developing a first-order invariance constraint that every contact Hamiltonian function must satisfy. This novel insight is then considered together with the zero-order invariance constraint to infer solutions, thereby yielding a generalized family of contact Hamiltonian functions generating non-strict or strict contact vector fields which are equal on the associated Legendre submanifold on which the dynamics of the thermodynamic system is living. Finally, we show sufficient conditions under which the inverse images of zero by the contact Hamiltonian functions or the Legendre submanifold are globally attractive when lifting the system dynamics to the complete TPS. A simulated example is given to support the theoretical developments and to discuss the difference of the dynamic behaviours between the generated strict and non-strict contact vector fields.
Keywords
Contact structure; Irreversible thermodynamics; Conservative contact systems; Attractivity; Stability
Citation
- Journal: Automatica
- Year: 2025
- Volume: 176
- Issue:
- Pages: 112251
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2025.112251
BibTeX
@article{Hoang_2025,
title={{On the contact Hamiltonian functions of conservative contact systems}},
volume={176},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2025.112251},
journal={Automatica},
publisher={Elsevier BV},
author={Hoang, N. Ha and Dochain, Denis},
year={2025},
pages={112251}
}
References
- Arnold, (1989)
- Bravetti, A. Contact geometry and thermodynamics. International Journal of Geometric Methods in Modern Physics vol. 16 1940003 (2019) – 10.1142/s0219887819400036
- Bravetti, A. & Padilla, P. Thermodynamics and evolutionary biology through optimal control. Automatica vol. 106 201–206 (2019) – 10.1016/j.automatica.2019.05.017
- Callen, (1985)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems vol. 12 159–174 (2006) – 10.1080/13873950500068823
- Crawford, C. R. & Moon, Y. S. Finding a positive definite linear combination of two Hermitian matrices. Linear Algebra and its Applications vol. 51 37–48 (1983) – 10.1016/0024-3795(83)90148-9
- De Pablo, (2014)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science vol. 65 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Transactions on Automatic Control vol. 54 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Favache, Contact structures: application to interconnected thermodynamical systems. (2007)
- Gibbs, (1931)
- Goto, S. Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics. Journal of Mathematical Physics vol. 56 (2015) – 10.1063/1.4927226
- Gromov, D. & Caines, P. E. Stability of composite thermodynamic systems with interconnection constraints. IET Control Theory & Applications vol. 9 1629–1636 (2015) – 10.1049/iet-cta.2014.0867
- Hoang, Lifting the non-isothermal CSTR dynamics to the complete Thermodynamic Phase Space. IFAC-POL (2022)
- Ha Hoang, N., Rodrigues, D. & Bonvin, D. Revisiting the concept of extents for chemical reaction systems using an enthalpy balance. Computers & Chemical Engineering vol. 136 106652 (2020) – 10.1016/j.compchemeng.2019.106652
- Hudon, Metric thermodynamic phase space and stability problems. IFAC-POL (2016)
- Libermann, (1987)
- Maschke, About the lift of irreversible thermodynamic systems to the Thermodynamic Phase Space. IFAC-POL (2016)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- MrugaŁa, R. Geometrical formulation of equilibrium phenomenological thermodynamics. Reports on Mathematical Physics vol. 14 419–427 (1978) – 10.1016/0034-4877(78)90010-1
- Mrugaa̵, R. On a special family of thermodynamic processes and their invariants. Reports on Mathematical Physics vol. 46 461–468 (2000) – 10.1016/s0034-4877(00)90012-0
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics vol. 29 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters vol. 62 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- Van Der Schaft, Port-controlled Hamiltonian systems: Towards a theory for control and design of nonlinear physical systems. SICE Journal (2000)
- van der Schaft, A. Liouville geometry of classical thermodynamics. Journal of Geometry and Physics vol. 170 104365 (2021) – 10.1016/j.geomphys.2021.104365
- Van der Schaft, A. & Maschke, B. Geometry of Thermodynamic Processes. Entropy vol. 20 925 (2018) – 10.3390/e20120925