Authors

Dimitri Jeltsema, Jacquelien M.A. Scherpen

Abstract

In this paper it is shown that the recently proposed port-controlled Hamiltonian systems with dissipation precisely dualize the classical Brayton-Moser equations. As a consequence, useful and important properties of the one framework can be translated to the other. For both frameworks a novel method is proposed to deal with networks containing capacitor-only loops or inductor-only cutsets using the Lagrange multiplier. This leads to the notion of implicit Brayton-Moser equations. Furthermore, the form and existence of the mixed-potential function is rederived from an external port point of view.

Keywords

Physical models; Hamiltonian systems; Brayton-Moser equations; passive elements; electrical networks

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2002
  • Volume: 35
  • Issue: 1
  • Pages: 1–6
  • Publisher: Elsevier BV
  • DOI: 10.3182/20020721-6-es-1901.00250
  • Note: 15th IFAC World Congress

BibTeX

@article{Jeltsema_2002,
  title={{ON NONLINEAR RLC NETWORKS: PORT-CONTROLLED HAMILTONIAN SYSTEMS DUALIZE THE BRAYTON-MOSER EQUATIONS}},
  volume={35},
  ISSN={1474-6670},
  DOI={10.3182/20020721-6-es-1901.00250},
  number={1},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={Jeltsema, Dimitri and Scherpen, Jacquelien M.A.},
  year={2002},
  pages={1--6}
}

Download the bib file

References

  • Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
  • Chua, L. & McPherson, J. Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. IEEE Trans. Circuits Syst. 21, 277–286 (1974) – 10.1109/tcs.1974.1083849
  • Kwatny, H., Massimo, F. & Bahar, L. The generalized Lagrange formulation for nonlinear RLC networks. IEEE Trans. Circuits Syst. 29, 220–233 (1982) – 10.1109/tcs.1982.1085140
  • MACFARLANE, A. G. J. An integral invariant formulation of a canonical equation set for non-linear electrical networks. International Journal of Control 11, 449–470 (1970) – 10.1080/00207177008905926
  • Massimo, F. M., Kwatny, H. G. & Bahar, L. Y. Derivation of the Brayton–Moser equations from a topological mixed potential function. Journal of the Franklin Institute 310, 259–269 (1980) – 10.1016/0016-0032(80)90045-9
  • Ortega, (1998)
  • van der Schaft, (2000)
  • van der Schaft, A. J., Dalsmo, M. & Maschke, B. M. Mathematical structures in the network representation of energy-conserving physical systems. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 201–206 – 10.1109/cdc.1996.574296
  • Scherpen, Lagrangian modeling and control of switching networks with integrated coupled magnetics. in Proc. 39th IEEE Conf. Dec. Contr. Sydney, Australia (2000)
  • Weiss, A Hamiltonian formulation for complete nonlinear RLC-networks. IEEE Trans. Circ. and Sys., Fund. Theory and Appl. (1997)