ON NONLINEAR RLC NETWORKS: PORT-CONTROLLED HAMILTONIAN SYSTEMS DUALIZE THE BRAYTON-MOSER EQUATIONS
Authors
Dimitri Jeltsema, Jacquelien M.A. Scherpen
Abstract
In this paper it is shown that the recently proposed port-controlled Hamiltonian systems with dissipation precisely dualize the classical Brayton-Moser equations. As a consequence, useful and important properties of the one framework can be translated to the other. For both frameworks a novel method is proposed to deal with networks containing capacitor-only loops or inductor-only cutsets using the Lagrange multiplier. This leads to the notion of implicit Brayton-Moser equations. Furthermore, the form and existence of the mixed-potential function is rederived from an external port point of view.
Keywords
Physical models; Hamiltonian systems; Brayton-Moser equations; passive elements; electrical networks
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2002
- Volume: 35
- Issue: 1
- Pages: 1–6
- Publisher: Elsevier BV
- DOI: 10.3182/20020721-6-es-1901.00250
- Note: 15th IFAC World Congress
BibTeX
@article{Jeltsema_2002,
title={{ON NONLINEAR RLC NETWORKS: PORT-CONTROLLED HAMILTONIAN SYSTEMS DUALIZE THE BRAYTON-MOSER EQUATIONS}},
volume={35},
ISSN={1474-6670},
DOI={10.3182/20020721-6-es-1901.00250},
number={1},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Jeltsema, Dimitri and Scherpen, Jacquelien M.A.},
year={2002},
pages={1--6}
}
References
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
- Chua, L. & McPherson, J. Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. IEEE Trans. Circuits Syst. 21, 277–286 (1974) – 10.1109/tcs.1974.1083849
- Kwatny, H., Massimo, F. & Bahar, L. The generalized Lagrange formulation for nonlinear RLC networks. IEEE Trans. Circuits Syst. 29, 220–233 (1982) – 10.1109/tcs.1982.1085140
- MACFARLANE, A. G. J. An integral invariant formulation of a canonical equation set for non-linear electrical networks. International Journal of Control 11, 449–470 (1970) – 10.1080/00207177008905926
- Massimo, F. M., Kwatny, H. G. & Bahar, L. Y. Derivation of the Brayton–Moser equations from a topological mixed potential function. Journal of the Franklin Institute 310, 259–269 (1980) – 10.1016/0016-0032(80)90045-9
- Ortega, (1998)
- van der Schaft, (2000)
- van der Schaft, A. J., Dalsmo, M. & Maschke, B. M. Mathematical structures in the network representation of energy-conserving physical systems. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 201–206 – 10.1109/cdc.1996.574296
- Scherpen, Lagrangian modeling and control of switching networks with integrated coupled magnetics. in Proc. 39th IEEE Conf. Dec. Contr. Sydney, Australia (2000)
- Weiss, A Hamiltonian formulation for complete nonlinear RLC-networks. IEEE Trans. Circ. and Sys., Fund. Theory and Appl. (1997)