On feedback invariants of controlled conservative contact systems
Authors
Hector Ramirez Estay, Bernhard Maschke, Daniel Sbarbaro
Abstract
Conservative contact systems are defined with respect to an invariant Legendre submanifold and permit to endow thermodynamic systems with a geometric structure. Structure preserving feedback of controlled conservative contact systems involves to determine the existence of closed-loop invariant Legendre submanifolds. General results characterizing these submanifolds are presented. For contact systems arising from the modelling of thermodynamic processes by using pseudo port-controlled Hamiltonian formulation a series of particular results, that permits to constructively design the invariant submanifold and relate them with the stability of the system, are presented. Furthermore, the closed-loop system may again be restricted to some invariant Legendre submanifold and the control reduced to a state-feedback control. A heat transmission example is used to illustrate the approach.
Citation
- Journal: 2011 9th IEEE International Conference on Control and Automation (ICCA)
- Year: 2011
- Volume:
- Issue:
- Pages: 495–500
- Publisher: IEEE
- DOI: 10.1109/icca.2011.6137986
BibTeX
@inproceedings{Ramirez_Estay_2011,
title={{On feedback invariants of controlled conservative contact systems}},
DOI={10.1109/icca.2011.6137986},
booktitle={{2011 9th IEEE International Conference on Control and Automation (ICCA)}},
publisher={IEEE},
author={Ramirez Estay, Hector and Maschke, Bernhard and Sbarbaro, Daniel},
year={2011},
pages={495--500}
}
References
- schaft der a van, On feedback control of Hamiltonian systems. Theory and Applications of Nonlinear Control Systems (1986)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems 12, 159–174 (2006) – 10.1080/13873950500068823
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- schaft der a van, System Theory and Mechanics (1989)
- Preiswerk, F., Arnold, P., Fasel, B. & Cattin, P. C. Robust tumour tracking from 2D imaging using a population-based statistical motion model. 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis 209–214 (2012) doi:10.1109/mmbia.2012.6164749 – 10.1109/mmbia.2012.6164749
- eberard, Conservative systems with ports on contact manifolds. Proceedings of the 16th IFAC World Congress Prague Czech Republic (2005)
- hermann, Geometry Physics and Systems (1973)
- Mrugala, R., Nulton, J. D., Christian Schön, J. & Salamon, P. Contact structure in thermodynamic theory. Reports on Mathematical Physics 29, 109–121 (1991) – 10.1016/0034-4877(91)90017-h
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal 47, 1819–1831 (2001) – 10.1002/aic.690470813
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science 65, 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- rami?rez, Lyapunov based control using contact structures. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC) (2011)
- Ramirez Estay, H., Maschke, B. & Sbarbaro, D. About structure preserving feedback of controlled contact systems. IEEE Conference on Decision and Control and European Control Conference 2305–2310 (2011) doi:10.1109/cdc.2011.6160371 – 10.1109/cdc.2011.6160371
- favache, Some properties of conservative control systems (2009)
- Ramirez, H., Maschke, B. & Sbarbaro, D. On the Hamiltonian formulation of the CSTR. 49th IEEE Conference on Decision and Control (CDC) 3301–3306 (2010) doi:10.1109/cdc.2010.5717317 – 10.1109/cdc.2010.5717317
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics 60, 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Grmela, M. & Öttinger, H. C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6632 (1997) – 10.1103/physreve.56.6620
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- maschke, Port-controlled Hamiltonian systems: Modelling origins and systemtheoretic properties. Proceedings of the International Symposium on Nonlinear Control Systems Design NOLCOS’92 (1992)
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters 57, 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3