On feedback equivalence to port controlled Hamiltonian systems
Authors
Daizhan Cheng, Alessandro Astolfi, Romeo Ortega
Abstract
In the last few years port controlled Hamiltonian (PCH) systems have emerged as an interesting class of nonlinear models suitable for a large number of physical applications. In this paper we study the question of feedback equivalence of nonlinear systems to PCH systems. More precisely, we give conditions under which a general nonlinear system can be transformed into a PCH system via static state feedback. We consider the two extreme cases where the target PCH system is completely a priori fixed or completely free, as well as the case where it is only partially predetermined. When the energy function is free a set of partial differential equations needs to be solved, on the other hand, if it is fixed we have to deal with a set of algebraic equations. In the former case, we give some verifiable necessary and sufficient conditions for solvability. As a by-product of our analysis we obtain some stabilization results for nonlinear systems.
Keywords
Hamiltonian systems; Linear-gradient systems; Passivity-based control; Feedback equivalence
Citation
- Journal: Systems & Control Letters
- Year: 2005
- Volume: 54
- Issue: 9
- Pages: 911–917
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2005.02.005
BibTeX
@article{Cheng_2005,
title={{On feedback equivalence to port controlled Hamiltonian systems}},
volume={54},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2005.02.005},
number={9},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Cheng, Daizhan and Astolfi, Alessandro and Ortega, Romeo},
year={2005},
pages={911--917}
}
References
- Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
- Bloch, Mechanical feedback control systems. (1999)
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Contr. 45, 2253–2270 (2000) – 10.1109/9.895562
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Contr. 36, 1228–1240 (1991) – 10.1109/9.100932
- Cheng, D., Shen, T. & Tarn, T. J. Pseudo-Hamiltonian realization and its application. Communications in Information and Systems 2, 91–120 (2002) – 10.4310/cis.2002.v2.n2.a1
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Isidori, (1995)
- McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 1021–1045 (1999) – 10.1098/rsta.1999.0363
- Ortega, R. Some Applications and Extensions of Interconnection and Damping Assignment Passivity – Based Control. IFAC Proceedings Volumes 36, 41–50 (2003) – 10.1016/s1474-6670(17)38865-1
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Rodriguez, H., Ortega, R., Escobar, G. & Barabanov, N. A robustly stable output feedback saturated controller for the boost DC-to-DC converter. Systems & Control Letters 40, 1–8 (2000) – 10.1016/s0167-6911(99)00113-9
- Sepulchre, (1996)
- Tabuada, P. & Pappas, G. J. From nonlinear to hamiltonian via feedback. IEEE Trans. Automat. Contr. 48, 1439–1442 (2003) – 10.1109/tac.2003.815040
- van der Schaft, (1999)
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037