Authors

Daizhan Cheng, Alessandro Astolfi, Romeo Ortega

Abstract

In the last few years port controlled Hamiltonian (PCH) systems have emerged as an interesting class of nonlinear models suitable for a large number of physical applications. In this paper we study the question of feedback equivalence of nonlinear systems to PCH systems. More precisely, we give conditions under which a general nonlinear system can be transformed into a PCH system via static state feedback. We consider the two extreme cases where the target PCH system is completely a priori fixed or completely free, as well as the case where it is only partially predetermined. When the energy function is free a set of partial differential equations needs to be solved, on the other hand, if it is fixed we have to deal with a set of algebraic equations. In the former case, we give some verifiable necessary and sufficient conditions for solvability. As a by-product of our analysis we obtain some stabilization results for nonlinear systems.

Keywords

Hamiltonian systems; Linear-gradient systems; Passivity-based control; Feedback equivalence

Citation

BibTeX

@article{Cheng_2005,
  title={{On feedback equivalence to port controlled Hamiltonian systems}},
  volume={54},
  ISSN={0167-6911},
  DOI={10.1016/j.sysconle.2005.02.005},
  number={9},
  journal={Systems & Control Letters},
  publisher={Elsevier BV},
  author={Cheng, Daizhan and Astolfi, Alessandro and Ortega, Romeo},
  year={2005},
  pages={911--917}
}

Download the bib file

References

  • Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
  • Bloch, Mechanical feedback control systems. (1999)
  • Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Contr. 45, 2253–2270 (2000) – 10.1109/9.895562
  • Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Contr. 36, 1228–1240 (1991) – 10.1109/9.100932
  • Cheng, D., Shen, T. & Tarn, T. J. Pseudo-Hamiltonian realization and its application. Communications in Information and Systems 2, 91–120 (2002) – 10.4310/cis.2002.v2.n2.a1
  • Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
  • Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
  • Isidori, (1995)
  • McLachlan, R. I., Quispel, G. R. W. & Robidoux, N. Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, 1021–1045 (1999) – 10.1098/rsta.1999.0363
  • Ortega, R. Some Applications and Extensions of Interconnection and Damping Assignment Passivity – Based Control. IFAC Proceedings Volumes 36, 41–50 (2003) – 10.1016/s1474-6670(17)38865-1
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Rodriguez, H., Ortega, R., Escobar, G. & Barabanov, N. A robustly stable output feedback saturated controller for the boost DC-to-DC converter. Systems & Control Letters 40, 1–8 (2000) – 10.1016/s0167-6911(99)00113-9
  • Sepulchre, (1996)
  • Tabuada, P. & Pappas, G. J. From nonlinear to hamiltonian via feedback. IEEE Trans. Automat. Contr. 48, 1439–1442 (2003) – 10.1109/tac.2003.815040
  • van der Schaft, (1999)
  • Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037