Numerical Approximation of Heat Transfer on Heterogenous Media
Authors
Tobias M. Scheuermann, Paul Kotyczka, Marie-Line Zanota, Isabelle Pitault, Haithem Louati, Bernhard Maschke
Abstract
In this paper we show the discrete modeling of the heat equation on an open cell metallic foam, exploiting its geometric structure. The topology of the material is described using the incidence matrices of a so called k‐complex. Together with the discrete constitutive equations, a finite‐dimensional model in port‐Hamiltonian form is found.
Citation
- Journal: PAMM
- Year: 2019
- Volume: 19
- Issue: 1
- Pages:
- Publisher: Wiley
- DOI: 10.1002/pamm.201900372
BibTeX
@article{Scheuermann_2019,
title={{Numerical Approximation of Heat Transfer on Heterogenous Media}},
volume={19},
ISSN={1617-7061},
DOI={10.1002/pamm.201900372},
number={1},
journal={PAMM},
publisher={Wiley},
author={Scheuermann, Tobias M. and Kotyczka, Paul and Zanota, Marie-Line and Pitault, Isabelle and Louati, Haithem and Maschke, Bernhard},
year={2019}
}
References
- Bonnet, J.-P., Topin, F. & Tadrist, L. Flow Laws in Metal Foams: Compressibility and Pore Size Effects. Transp Porous Med 73, 233–254 (2007) – 10.1007/s11242-007-9169-5
- Hugo, J. M., Brun, E., Topin, F. & Vicente, J. Conjugate Heat and Mass Transfer in Metal Foams: A Numerical Study for Heat Exchangers Design. DDF 297–301, 960–965 (2010) – 10.4028/www.scientific.net/ddf.297-301.960
- Bodla, K. K., Murthy, J. Y. & Garimella, S. V. Resistance network-based thermal conductivity model for metal foams. Computational Materials Science 50, 622–632 (2010) – 10.1016/j.commatsci.2010.09.026
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Alotto, P., Freschi, F., Repetto, M. & Rosso, C. The Cell Method for Electrical Engineering and Multiphysics Problems. Lecture Notes in Electrical Engineering (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-36101-2 – 10.1007/978-3-642-36101-2
- Gerritsma, M. et al. The Geometric Basis of Numerical Methods. Lecture Notes in Computational Science and Engineering 17–35 (2013) doi:10.1007/978-3-319-01601-6_2 – 10.1007/978-3-319-01601-6_2
- Kotyczka, P. & Maschke, B. Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. at - Automatisierungstechnik 65, 308–322 (2017) – 10.1515/auto-2016-0098
- Seslija, M., Scherpen, J. M. A. & van der Schaft, A. Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems. Automatica 50, 369–377 (2014) – 10.1016/j.automatica.2013.11.020