Authors

Gerrit A. Folkertsma, Arjan J. van der Schaft, Stefano Stramigioli

Abstract

In high-speed locomotion, control is best shared between rain” and ody”: if the natural body dynamics already exhibit desired behaviour, control action can be restricted to stabilising this behaviour, or providing energy to keep it going. This morphological computation can be modelled and designed using Port-Hamiltonian systems (PHS) theory, since the basis of both is the interconnection of dynamic elements. In this paper, we explore the application of PHS to morphological computation, showing that a three degrees-of-freedom elastic spring functioning as spine in a quadrupedal robot can lead to forward locomotion|without any complicated control action whatsoever.

Keywords

Robot dynamics; Control by interconnection; Locomotion; Numerical simulation; Port-Hamiltonian Systems

Citation

  • Journal: IFAC-PapersOnLine
  • Year: 2015
  • Volume: 48
  • Issue: 13
  • Pages: 170–175
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ifacol.2015.10.234
  • Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015

BibTeX

@article{Folkertsma_2015,
  title={{Morphological computation in a fast-running quadruped with elastic spine}},
  volume={48},
  ISSN={2405-8963},
  DOI={10.1016/j.ifacol.2015.10.234},
  number={13},
  journal={IFAC-PapersOnLine},
  publisher={Elsevier BV},
  author={Folkertsma, Gerrit A. and van der Schaft, Arjan J. and Stramigioli, Stefano},
  year={2015},
  pages={170--175}
}

Download the bib file

References

  • Cao, Passive Quadrupedal Bounding with a Segmented Flexible Torso. (2012)
  • Cavanagh, P. R. & Lafortune, M. A. Ground reaction forces in distance running. Journal of Biomechanics vol. 13 397–406 (1980) – 10.1016/0021-9290(80)90033-0
  • Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007)10.1016/j.automatica.2006.08.014
  • Culha, U. & Saranli, U. Quadrupedal bounding with an actuated spinal joint. 2011 IEEE International Conference on Robotics and Automation 1392–1397 (2011) doi:10.1109/icra.2011.5980176 – 10.1109/icra.2011.5980176
  • Duindam, (2009)
  • Fasse, E. D. & Breedveld, P. C. Modeling of Elastically Coupled Bodies: Part II—Exponential and Generalized Coordinate Methods. Journal of Dynamic Systems, Measurement, and Control vol. 120 501–506 (1998) – 10.1115/1.2801492
  • Gilardi, G. & Sharf, I. Literature survey of contact dynamics modelling. Mechanism and Machine Theory vol. 37 1213–1239 (2002) – 10.1016/s0094-114x(02)00045-9
  • Iida, Exploiting body dynamics for controlling a running quadruped robot. (2005)
  • Ijspeert, A. J., Crespi, A., Ryczko, D. & Cabelguen, J.-M. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science vol. 315 1416–1420 (2007) – 10.1126/science.1138353
  • Maheshwari, Resonance based multi-gaited robot locomotion.. (2012)
  • Pfeifer, R., Lungarella, M. & Iida, F. Self-Organization, Embodiment, and Biologically Inspired Robotics. Science vol. 318 1088–1093 (2007) – 10.1126/science.1145803
  • Poulakakis, I., Papadopoulos, E. & Buehler, M. On the Stability of the Passive Dynamics of Quadrupedal Running with a Bounding Gait. The International Journal of Robotics Research vol. 25 669–687 (2006) – 10.1177/0278364906066768
  • Pouya, Role of Spine Compliance and Actuation in the Bounding Performance of Quadruped Robots. (2012)
  • Schaft, Port-Hamiltonian Systems Theory: An Introductory Overview. dutiosb.twi.tudelft.nl (2014)
  • Stramigioli, (2001)
  • Wanders, Design and analysis of an optimal hopper for use in resonance-based locomotion. (2015)