Modelling Pedestrian Collective Dynamics with Port-Hamiltonian Systems
Authors
Antoine Tordeux, Claudia Totzeck, Sylvain Lassarre, Jean-Patrick Lebacque
Abstract
Port-Hamiltonian systems (PHS) are increasingly popular modelling approaches for nonlinear physical systems. In this contribution, we identify a general class of microscopic force-based pedestrian models that can be formulated as a port-Hamiltonian system. The port-Hamiltonian paradigm allows for identification of new fundamental physical modelling components of pedestrian dynamics. The skew-symmetric term specific to the conservative Hamiltonian structure of the PHS corresponds to pedestrian isotropic interaction forces. The dissipation to the input port accounts for the pedestrian’s desired velocity and sensitivity, the input acting in the PHS as a feedback control. Some simulations of counter-flow are performed on a torus. Interestingly, a phase transition from disorder dynamics to self-organising lane formation occurs as the conservative forces become weak relative to the dissipation and control forces. A critical parameter setting for lane formation can then be identified using the Hamiltonian as an order parameter.
Keywords
Pedestrian dynamics; Port-Hamiltonian system; Forcebased model; Collective dynamics
Citation
- ISBN: 9789819979752
- Publisher: Springer Nature Singapore
- DOI: 10.1007/978-981-99-7976-9_24
- Note: International Conference on Traffic and Granular Flow
BibTeX
@inbook{Tordeux_2024,
title={{Modelling Pedestrian Collective Dynamics with Port-Hamiltonian Systems}},
ISBN={9789819979769},
ISSN={2366-2565},
DOI={10.1007/978-981-99-7976-9_24},
booktitle={{Traffic and Granular Flow ’22}},
publisher={Springer Nature Singapore},
author={Tordeux, Antoine and Totzeck, Claudia and Lassarre, Sylvain and Lebacque, Jean-Patrick},
year={2024},
pages={187--195}
}
References
- Boltes, M., Zhang, J., Tordeux, A., Schadschneider, A. & Seyfried, A. Empirical Results of Pedestrian and Evacuation Dynamics. Encyclopedia of Complexity and Systems Science 1–29 (2018) doi:10.1007/978-3-642-27737-5_706-1 – 10.1007/978-3-642-27737-5_706-1
- Chraibi, M., Tordeux, A., Schadschneider, A. & Seyfried, A. Modelling of Pedestrian and Evacuation Dynamics. Encyclopedia of Complexity and Systems Science 1–22 (2018) doi:10.1007/978-3-642-27737-5_705-1 – 10.1007/978-3-642-27737-5_705-1
- Cristofaro, A., Giunta, G. & Giordano, P. R. Fault-Tolerant Formation Control of Passive Multi-Agent Systems Using Energy Tanks. IEEE Control Systems Letters vol. 6 2551–2556 (2022) – 10.1109/lcsys.2022.3169308
- Dai, S. & Koutsoukos, X. Safety analysis of integrated adaptive cruise and lane keeping control using multi-modal port-Hamiltonian systems. Nonlinear Analysis: Hybrid Systems vol. 35 100816 (2020) – 10.1016/j.nahs.2019.100816
- Duives, D. C., Daamen, W. & Hoogendoorn, S. P. State-of-the-art crowd motion simulation models. Transportation Research Part C: Emerging Technologies vol. 37 193–209 (2013) – 10.1016/j.trc.2013.02.005
- Groot, R. D. & Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of Chemical Physics vol. 107 4423–4435 (1997) – 10.1063/1.474784
- Helbing, D. & Molnár, P. Social force model for pedestrian dynamics. Physical Review E vol. 51 4282–4286 (1995) – 10.1103/physreve.51.4282
- Knorn, S., Chen, Z. & Middleton, R. H. Overview: Collective Control of Multiagent Systems. IEEE Transactions on Control of Network Systems vol. 3 334–347 (2016) – 10.1109/tcns.2015.2468991
- Ma, Y., Chen, J., Wang, J., Xu, Y. & Wang, Y. Path-Tracking Considering Yaw Stability With Passivity-Based Control for Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems vol. 23 8736–8746 (2022) – 10.1109/tits.2021.3085713
- Martinez-Gil, F., Lozano, M., García-Fernández, I. & Fernández, F. Modeling, Evaluation, and Scale on Artificial Pedestrians. ACM Computing Surveys vol. 50 1–35 (2017) – 10.1145/3117808
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Matei, I., Mavridis, C., Baras, J. S. & Zhenirovskyy, M. Inferring Particle Interaction Physical Models and Their Dynamical Properties. 2019 IEEE 58th Conference on Decision and Control (CDC) 4615–4621 (2019) doi:10.1109/cdc40024.2019.9029524 – 10.1109/cdc40024.2019.9029524
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Schadschneider, A., Chraibi, M., Seyfried, A., Tordeux, A. & Zhang, J. Pedestrian Dynamics: From Empirical Results to Modeling. Modeling and Simulation in Science, Engineering and Technology 63–102 (2018) doi:10.1007/978-3-030-05129-7_4 – 10.1007/978-3-030-05129-7_4
- van der Schaft, A. Symmetries and conservation laws for Hamiltonian systems with inputs and outputs: A generalization of Noether’s theorem. Systems & Control Letters vol. 1 108–115 (1981) – 10.1016/s0167-6911(81)80046-1
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Sharf, M. & Zelazo, D. Analysis and Synthesis of MIMO Multi-Agent Systems Using Network Optimization. IEEE Transactions on Automatic Control vol. 64 4512–4524 (2019) – 10.1109/tac.2019.2908258
- Tordeux, A., Chraibi, M. & Seyfried, A. Collision-Free Speed Model for Pedestrian Dynamics. Traffic and Granular Flow ’15 225–232 (2016) doi:10.1007/978-3-319-33482-0_29 – 10.1007/978-3-319-33482-0_29
- Totzeck, C. An anisotropic interaction model with collision avoidance. Kinetic & Related Models vol. 13 1219–1242 (2020) – 10.3934/krm.2020044
- Verlet, L. Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review vol. 159 98–103 (1967) – 10.1103/physrev.159.98
- Xue, D., Hirche, S. & Cao, M. Opinion Behavior Analysis in Social Networks Under the Influence of Coopetitive Media. IEEE Transactions on Network Science and Engineering vol. 7 961–974 (2020) – 10.1109/tnse.2019.2894565