Modeling and Control of Single-Input, Multi-Output DC-DC Converters in Port-Controlled Hamiltonian Framework
Authors
Sowmya J, Arunkumar D Mahindrakar, Lakshminarasamma N
Abstract
Traditionally, Single-Input, Multi-Output (SIMO) DC-DC converters - a category of multiport converters, have been used for multiple supplies with different output levels in hybrid and electric vehicles in both their isolated and non-isolated versions. The emerging idea is to use one controllable switch to avoid synchronisation problem among switches. A key challenge lies in modeling the SIMO converters due to its differential algebraic nature and increased state-space dimension. This work proposes a port-Hamiltonian approach for modeling the SIMO converters. Controller design involves both current and voltage control of non-isolated SIMO converters in order to achieve largesignal stability and steady-state accuracy of multiple outputs. Simulations are performed on a DC-DC SEPIC-Boost converter to compare the time-domain and the frequency-domain responses of the states in the proposed model w.r.t. the actual circuit model. The response of the converter to large variations in the load is also simulated.
Citation
- Journal: 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET)
- Year: 2024
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/sefet61574.2024.10718131
BibTeX
@inproceedings{J_2024,
title={{Modeling and Control of Single-Input, Multi-Output DC-DC Converters in Port-Controlled Hamiltonian Framework}},
DOI={10.1109/sefet61574.2024.10718131},
booktitle={{2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET)}},
publisher={IEEE},
author={J, Sowmya and Mahindrakar, Arunkumar D and N, Lakshminarasamma},
year={2024},
pages={1--6}
}
References
- Ki-Bum Park, Hyun-Wook Seong, Hyoung-Suk Kim, Gun-Woo Moon & Myung-Joong Youn. Integrated boost-sepic converter for high step-up applications. 2008 IEEE Power Electronics Specialists Conference 944–950 (2008) doi:10.1109/pesc.2008.4592051 – 10.1109/pesc.2008.4592051
- Ferrera Prieto, M. B., Litran, S. P., Aranda, E. D. & Gomez, J. M. E. New Single-Input, Multiple-Output Converter Topologies: Combining Single-Switch Nonisolated dc-dc Converters for Single-Input, Multiple-Output Applications. EEE Ind. Electron. Mag. 10, 6–20 (2016) – 10.1109/mie.2016.2550000
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Modeling of switched DC-to-DC power converters. Communications and Control Engineering 135–180 (1998) doi:10.1007/978-1-4471-3603-3_6 – 10.1007/978-1-4471-3603-3_6
- van der Schaft, A. J. & Camlibel, M. K. A state transfer principle for switching port-Hamiltonian systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 45–50 (2009) doi:10.1109/cdc.2009.5400785 – 10.1109/cdc.2009.5400785
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Becerra, G., Meghnous, A. R., Pham, M. T., Lin-Shi, X. & Patino, D. A unified hybrid control for DC/DC power converters using port-Hamiltonian formulation. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 4851–4856 (2017) doi:10.1109/iecon.2017.8216837 – 10.1109/iecon.2017.8216837
- Buaket, W. & Pongyart, W. A port-Hamiltonian Approach in Current Controller Design for Buck Boost Converter. 2022 International Electrical Engineering Congress (iEECON) 1–4 (2022) doi:10.1109/ieecon53204.2022.9741575 – 10.1109/ieecon53204.2022.9741575
- Pang, S. et al. Large-Signal Stable Nonlinear Control of DC/DC Power Converter With Online Estimation of Uncertainties. IEEE J. Emerg. Sel. Topics Power Electron. 9, 7355–7368 (2021) – 10.1109/jestpe.2020.3010895
- Liberzon, D. & Trenn, S. Switched nonlinear differential algebraic equations: Solution theory, Lyapunov functions, and stability. Automatica 48, 954–963 (2012) – 10.1016/j.automatica.2012.02.041
- Liberzon, D. Switching in Systems and Control. Systems & Control: Foundations & Applications (Birkhäuser Boston, 2003). doi:10.1007/978-1-4612-0017-8 – 10.1007/978-1-4612-0017-8
- Markkassery, S., Mahindrakar, A. D., Lakshminarasamma, N. & Pasumarthy, R. Modelling of non-isolated single-input-multi-output DC-DC converter. 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) 1–6 (2018) doi:10.1109/pedes.2018.8707836 – 10.1109/pedes.2018.8707836
- Lamour, R., März, R. & Tischendorf, C. Differential-Algebraic Equations: A Projector Based Analysis. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-27555-5 – 10.1007/978-3-642-27555-5
- Erickson, R. W. & Maksimović, D. Fundamentals of Power Electronics. (Springer US, 2001). doi:10.1007/b100747 – 10.1007/b100747
- Buaket, W. & Pongyart, W. A port-Hamiltonian Approach in Current Controller Design for Buck Boost Converter. 2022 International Electrical Engineering Congress (iEECON) 1–4 (2022) doi:10.1109/ieecon53204.2022.9741575 – 10.1109/ieecon53204.2022.9741575
- Sachin, C. S. & Nayak, Sri. G. Design and simulation for sliding mode control in DC-DC boost converter. 2017 2nd International Conference on Communication and Electronics Systems (ICCES) 440–445 (2017) doi:10.1109/cesys.2017.8321317 – 10.1109/cesys.2017.8321317