Model reduction by moment matching for switched power converters
Authors
Wissam Dib, Alessandro Astolfi, Romeo Ortega
Abstract
The problem of model reduction by moment matching for switched power converters described in so-called port controlled Hamiltonian form is addressed and solved using the recently introduced notion of moment for nonlinear systems. The theory is illustrated by means of simulations on a three-phase rectifier with LCL filter.
Citation
- Journal: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
- Year: 2009
- Volume:
- Issue:
- Pages: 6555–6560
- Publisher: IEEE
- DOI: 10.1109/cdc.2009.5400730
BibTeX
@inproceedings{Dib_2009,
title={{Model reduction by moment matching for switched power converters}},
DOI={10.1109/cdc.2009.5400730},
booktitle={{Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference}},
publisher={IEEE},
author={Dib, Wissam and Astolfi, Alessandro and Ortega, Romeo},
year={2009},
pages={6555--6560}
}
References
- Kavranoǧlu, D. & Bettayeb, M. Characterization of the solution to the optimal H∞ model reduction problem. Systems & Control Letters 20, 99–107 (1993) – 10.1016/0167-6911(93)90021-w
- Krener, A. J. Model Reduction for Linear and Nonlinear Control Systems. Proceedings of the 45th IEEE Conference on Decision and Control nil11–nil11 (2006) doi:10.1109/cdc.2006.376870 – 10.1109/cdc.2006.376870
- Perez, M., Ortega, R. & Espinoza, J. Passivity-Based PI Control of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 12, 881–890 (2004) – 10.1109/tcst.2004.833628
- Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters 21, 143–153 (1993) – 10.1016/0167-6911(93)90117-o
- Scherpen, J. M. A. H∞ balancing for nonlinear systems. Int. J. Robust Nonlinear Control 6, 645–668 (1996) – 10.1002/(sici)1099-1239(199608)6:7<645::aid-rnc179>3.0.co;2-x
- SCHERPEN, J. M. A. & VAN DER SCHAFT, A. J. Normalized coprime factorizations and balancing for unstable nonlinear systems. International Journal of Control 60, 1193–1222 (1994) – 10.1080/00207179408921517
- van der schaft, Gain and Passivity Techniques in Nonlinear Control (1999)
- Xue-Xiang Huang, Wei-Yong Yan & Teo, K. L. H/sub 2/ near-optimal model reduction. IEEE Trans. Automat. Contr. 46, 1279–1284 (2001) – 10.1109/9.940934
- Astolfi, A. Model reduction by moment matching for nonlinear systems. 2008 47th IEEE Conference on Decision and Control 4873–4878 (2008) doi:10.1109/cdc.2008.4738791 – 10.1109/cdc.2008.4738791
- astolfi, Model reduction by moment matching (semi-plenary presentation). IFAC Symposium on Nonlinear Control Systems (2007)
- Fujimoto, K. & Scherpen, J. M. A. Nonlinear input-normal realizations based on the differential eigenstructure of Hankel operators. IEEE Trans. Automat. Contr. 50, 2–18 (2005) – 10.1109/tac.2004.840476
- bernstein, Matrix Mathematics Theory Facts and Formulas With Application to Linear Systems Theory (2005)
- Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F. & Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 18, 688–698 (2010) – 10.1109/tcst.2009.2023669
- GLOVER, K. All optimal Hankel-norm approximations of linear multivariable systems and theirL,∞-error bounds†. International Journal of Control 39, 1115–1193 (1984) – 10.1080/00207178408933239
- antoulas, H Norm Approximation Unsolved Problems in Mathematical Systems and Control Theory (2004)
- scholecht, Electric Power Principles (1991)
- antoulas, SIAM Advances in design and control. Approximation of Large-Scale Dynamical Systems (2005)