Authors

Wissam Dib, Alessandro Astolfi, Romeo Ortega

Abstract

The problem of model reduction by moment matching for switched power converters described in so-called port controlled Hamiltonian form is addressed and solved using the recently introduced notion of moment for nonlinear systems. The theory is illustrated by means of simulations on a three-phase rectifier with LCL filter.

Citation

  • Journal: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference
  • Year: 2009
  • Volume:
  • Issue:
  • Pages: 6555–6560
  • Publisher: IEEE
  • DOI: 10.1109/cdc.2009.5400730

BibTeX

@inproceedings{Dib_2009,
  title={{Model reduction by moment matching for switched power converters}},
  DOI={10.1109/cdc.2009.5400730},
  booktitle={{Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference}},
  publisher={IEEE},
  author={Dib, Wissam and Astolfi, Alessandro and Ortega, Romeo},
  year={2009},
  pages={6555--6560}
}

Download the bib file

References

  • Kavranoǧlu, D. & Bettayeb, M. Characterization of the solution to the optimal H∞ model reduction problem. Systems & Control Letters 20, 99–107 (1993) – 10.1016/0167-6911(93)90021-w
  • Krener, A. J. Model Reduction for Linear and Nonlinear Control Systems. Proceedings of the 45th IEEE Conference on Decision and Control nil11–nil11 (2006) doi:10.1109/cdc.2006.376870 – 10.1109/cdc.2006.376870
  • Perez, M., Ortega, R. & Espinoza, J. Passivity-Based PI Control of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 12, 881–890 (2004) – 10.1109/tcst.2004.833628
  • Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters 21, 143–153 (1993) – 10.1016/0167-6911(93)90117-o
  • Scherpen, J. M. A. H∞ balancing for nonlinear systems. Int. J. Robust Nonlinear Control 6, 645–668 (1996) – 10.1002/(sici)1099-1239(199608)6:7<645::aid-rnc179>3.0.co;2-x
  • SCHERPEN, J. M. A. & VAN DER SCHAFT, A. J. Normalized coprime factorizations and balancing for unstable nonlinear systems. International Journal of Control 60, 1193–1222 (1994) – 10.1080/00207179408921517
  • van der schaft, Gain and Passivity Techniques in Nonlinear Control (1999)
  • Xue-Xiang Huang, Wei-Yong Yan & Teo, K. L. H/sub 2/ near-optimal model reduction. IEEE Trans. Automat. Contr. 46, 1279–1284 (2001) – 10.1109/9.940934
  • Astolfi, A. Model reduction by moment matching for nonlinear systems. 2008 47th IEEE Conference on Decision and Control 4873–4878 (2008) doi:10.1109/cdc.2008.4738791 – 10.1109/cdc.2008.4738791
  • astolfi, Model reduction by moment matching (semi-plenary presentation). IFAC Symposium on Nonlinear Control Systems (2007)
  • Fujimoto, K. & Scherpen, J. M. A. Nonlinear input-normal realizations based on the differential eigenstructure of Hankel operators. IEEE Trans. Automat. Contr. 50, 2–18 (2005) – 10.1109/tac.2004.840476
  • bernstein, Matrix Mathematics Theory Facts and Formulas With Application to Linear Systems Theory (2005)
  • Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F. & Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Contr. Syst. Technol. 18, 688–698 (2010) – 10.1109/tcst.2009.2023669
  • GLOVER, K. All optimal Hankel-norm approximations of linear multivariable systems and theirL,∞-error bounds†. International Journal of Control 39, 1115–1193 (1984) – 10.1080/00207178408933239
  • antoulas, H Norm Approximation Unsolved Problems in Mathematical Systems and Control Theory (2004)
  • scholecht, Electric Power Principles (1991)
  • antoulas, SIAM Advances in design and control. Approximation of Large-Scale Dynamical Systems (2005)