Model Order Reduction of RLC Circuit System Modeled by Port-Hamiltonian Structure
Authors
Yao Huang, Yao-Lin Jiang, Kang-Li Xu
Abstract
In this brief, we consider the port-Hamiltonian (PH) modeling of general RLC circuits, then explore the model order reduction (MOR) of corresponding port-Hamiltonian differential algebra equation (PH-DAE) systems. Specifically, by directed graphs, the general RLC circuits are firstly modeled as PH-DAE systems which imply the important passivity property. Based on \( \varepsilon \) -embedding and parametric moment matching techniques, MOR is implemented to the PH-DAE system, and the corresponding reduced system preserves PH-DAE structure and then preserves the passivity property. In addition, we prove that the reduced parametric PH system obtained by only one-side projection can preserve three times moments which indicates better accuracy in theory, and the error estimation between PH-DAE system and parametric PH system is also provided.
Citation
- Journal: IEEE Transactions on Circuits and Systems II: Express Briefs
- Year: 2022
- Volume: 69
- Issue: 3
- Pages: 1542–1546
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tcsii.2021.3120548
BibTeX
@article{Huang_2022,
title={{Model Order Reduction of RLC Circuit System Modeled by Port-Hamiltonian Structure}},
volume={69},
ISSN={1558-3791},
DOI={10.1109/tcsii.2021.3120548},
number={3},
journal={IEEE Transactions on Circuits and Systems II: Express Briefs},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Huang, Yao and Jiang, Yao-Lin and Xu, Kang-Li},
year={2022},
pages={1542--1546}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Jiang, Model Order Reduction Methods (2010)
- Jiang, Y.-L., Qi, Z.-Z. & Yang, P. Model Order Reduction of Linear Systems via the Cross Gramian and SVD. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 66 422–426 (2019) – 10.1109/tcsii.2018.2864115
- Jiang, Y.-L. & Xu, K.-L. Frequency-Limited Reduced Models for Linear and Bilinear Systems on the Riemannian Manifold. IEEE Transactions on Automatic Control vol. 66 3938–3951 (2021) – 10.1109/tac.2020.3027643
- Jiang, Y.-L. & Yang, J.-M. Asymptotic Waveform Evaluation With Higher Order Poles. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 68 1681–1692 (2021) – 10.1109/tcsi.2021.3052838
- Jiang, Y.-L. & Xu, K.-L. Riemannian Modified Polak–Ribière–Polyak Conjugate Gradient Order Reduced Model by Tensor Techniques. SIAM Journal on Matrix Analysis and Applications vol. 41 432–463 (2020) – 10.1137/19m1257147
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Sato, K. Riemannian optimal model reduction of linear port-Hamiltonian systems. Automatica vol. 93 428–434 (2018) – 10.1016/j.automatica.2018.03.051
- Jiang, Y.-L. & Xu, K.-L. Model Order Reduction of Port-Hamiltonian Systems by Riemannian Modified Fletcher–Reeves Scheme. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 66 1825–1829 (2019) – 10.1109/tcsii.2019.2895872
- Hauschild, S.-A., Marheineke, N. & Mehrmann, V. Model reduction techniques for port‐Hamiltonian differential‐algebraic systems. PAMM vol. 19 (2019) – 10.1002/pamm.201900040
- Beattie, C., Gugercin, S. & Mehrmann, V. Structure-Preserving Interpolatory Model Reduction for Port-Hamiltonian Differential-Algebraic Systems. Realization and Model Reduction of Dynamical Systems 235–254 (2022) doi:10.1007/978-3-030-95157-3_13 – 10.1007/978-3-030-95157-3_13
- Mohaghegh, Model order reduction for semi-explicit systems of differential algebraic equations. Proc. Mathmod
- Mohaghegh, Linear and nonlinear model order reduction for numerical simulation of electric circuits. (2010)
- Jiang, Y.-L., Xu, K.-L. & Chen, C.-Y. Parameterized model order reduction for linear DAE systems via ε-embedding technique. Journal of the Franklin Institute vol. 356 2901–2918 (2019) – 10.1016/j.jfranklin.2018.08.032
- Li, Y.-T., Bai, Z., Su, Y. & Zeng, X. Model Order Reduction of Parameterized Interconnect Networks via a Two-Directional Arnoldi Process. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 27 1571–1582 (2008) – 10.1109/tcad.2008.927768
- Deo, Graph Theory with Applications to Engineering and Computer Science (1974)
- Vlach, Computer Methods for Circuit Analysis and Design (1994)
- Freund, R. W. Structure-Preserving Model Order Reduction of RCL Circuit Equations. Mathematics in Industry 49–73 (2008) doi:10.1007/978-3-540-78841-6_3 – 10.1007/978-3-540-78841-6_3
- Bebiano, N., Nakazato, H., da Providência, J., Lemos, R. & Soares, G. Inequalities for J-Hermitian matrices. Linear Algebra and its Applications vol. 407 125–139 (2005) – 10.1016/j.laa.2005.05.021