Minimal port-Hamiltonian modeling of voice production: choices of fluid flow hypotheses, resulting structure and comparison
Authors
Thomas Risse, Thomas Hélie, Fabrice Silva, Antoine Falaize
Abstract
Voice production results from the interaction between expelled airflow and soft tissues in the larynx and the vocal tract. Among the large literature on this topic over the last fifty years, a few nonlinear fluid-structure interaction models have been proposed in the port-Hamiltonian framework for passivity purposes. In this paper, we examine, compare and discuss two lumped-element port-Hamiltonian models from the literature, both derived from distributed parameter descriptions and simplifying assumptions chosen to integrate the minimal relevant phenomena involved in the larynx (for self-oscillations) or the vocal tract (during articulation). These models are recalled and reformulated using common terminology and notations. This leads to equivalent circuit representations, the components and the structure of which allow direct comparison (about causality, dimension, nonlinear laws, coupling) and physical interpretation. These results highlight important properties to consider and provide guidelines for future modelling improvement to be used in simulation.
Keywords
Modelling; Port-Hamiltonian systems; Distributed parameter systems; Fluid-structure interaction; Vocal apparatus
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 238–243
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.287
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Risse_2024,
title={{Minimal port-Hamiltonian modeling of voice production: choices of fluid flow hypotheses, resulting structure and comparison}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.287},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Risse, Thomas and Hélie, Thomas and Silva, Fabrice and Falaize, Antoine},
year={2024},
pages={238--243}
}
References
- de Vries, M. P., Schutte, H. K., Veldman, A. E. P. & Verkerke, G. J. Glottal flow through a two-mass model: Comparison of Navier–Stokes solutions with simplified models. The Journal of the Acoustical Society of America vol. 111 1847–1853 (2002) – 10.1121/1.1323716
- Encina, M., Yuz, J., Zanartu, M. & Galindo, G. Vocal fold modeling through the port-Hamiltonian systems approach. 2015 IEEE Conference on Control Applications (CCA) 1558–1563 (2015) doi:10.1109/cca.2015.7320832 – 10.1109/cca.2015.7320832
- Hélie, (2017)
- Ishizaka, K. & Flanagan, J. L. Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords. Bell System Technical Journal vol. 51 1233–1268 (1972) – 10.1002/j.1538-7305.1972.tb02651.x
- Lopes, N. & Hélie, T. Energy Balanced Model of a Jet Interacting With a Brass Player’s Lip. Acta Acustica united with Acustica vol. 102 141–154 (2016) – 10.3813/aaa.918931
- Mora, L. A., Le Gorrec, Y., Matignon, D., Ramirez, H. & Yuz, J. I. On port-Hamiltonian formulations of 3-dimensional compressible Newtonian fluids. Physics of Fluids vol. 33 (2021) – 10.1063/5.0067784
- Mora, L. A., Ramirez, H., Yuz, J. I., Le Gorec, Y. & Zañartu, M. Energy-based fluid–structure model of the vocal folds. IMA Journal of Mathematical Control and Information vol. 38 466–492 (2020) – 10.1093/imamci/dnaa031
- Mora, L. A., Yuz, J. I., Ramirez, H. & Gorrec, Y. L. A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds . IFAC-PapersOnLine vol. 51 62–67 (2018) – 10.1016/j.ifacol.2018.06.016
- Ruty, N., Pelorson, X., Van Hirtum, A., Lopez-Arteaga, I. & Hirschberg, A. An in vitro setup to test the relevance and the accuracy of low-order vocal folds models. The Journal of the Acoustical Society of America vol. 121 479–490 (2007) – 10.1121/1.2384846
- Story, B. H. & Titze, I. R. Voice simulation with a body-cover model of the vocal folds. The Journal of the Acoustical Society of America vol. 97 1249–1260 (1995) – 10.1121/1.412234
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Wang, X., Zheng, X., Titze, I. R., Palaparthi, A. & Xue, Q. Examining the Quasi-Steady Airflow Assumption in Irregular Vocal Fold Vibration. Applied Sciences vol. 13 12691 (2023) – 10.3390/app132312691