Local linear dynamics assignment in IDA-PBC for underactuated mechanical systems
Authors
Abstract
The problem of finding a set of design parameters in the well-known IDA-PBC approach for a class of nonlinear underactuated mechanical systems to realize desired time behavior of the closed loop Port-Hamiltonian system in a transparent way is considered. Using a local coordinate transformation, the effect of the homogeneous solution of the potential energy matching PDE is isolated. By comparison of desired local linear dynamics with the parametrized linearization of the closed loop dynamics a set of linear equations for the IDA-PBC design parameters is derived. Besides the possibility to assign predefined dynamics the definiteness check of the potential energy can be omitted. With an Acrobot-type mechanical system the design steps are illustrated and simulations validate the performance of the approach.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 6534–6539
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6160656
BibTeX
@inproceedings{Kotyczka_2011,
title={{Local linear dynamics assignment in IDA-PBC for underactuated mechanical systems}},
DOI={10.1109/cdc.2011.6160656},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={Kotyczka, Paul},
year={2011},
pages={6534--6539}
}
References
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Trans. Automat. Contr. 52, 1093–1099 (2007) – 10.1109/tac.2007.899064
- olfati-saber, Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles (2001)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Contr. 45, 2253–2270 (2000) – 10.1109/9.895562
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Automat. Contr. 50, 1936–1955 (2005) – 10.1109/tac.2005.860292
- acosta, Constructive feedback linearization of mechanical systems with friction and underactuation degree one. Proc 1st Europ Control Conf (2007)
- Kotyczka, P., Volf, A. & Lohmann, B. Passivity based trajectory tracking control with predefined local linear error dynamics. Proceedings of the 2010 American Control Conference 3429–3434 (2010) doi:10.1109/acc.2010.5531100 – 10.1109/acc.2010.5531100
- Grizzle, J. W., Moog, C. H. & Chevallereau, C. Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Automat. Contr. 50, 559–576 (2005) – 10.1109/tac.2005.847057
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control 10, 451–468 (2004) – 10.3166/ejc.10.451-468
- Chang, D. E. Generalization of the IDA-PBC method for stabilization of mechanical systems. 18th Mediterranean Conference on Control and Automation, MED’10 226–230 (2010) doi:10.1109/med.2010.5547672 – 10.1109/med.2010.5547672
- boyd, Linear Dynamical Systems Lecture Notes (2005)
- Kotyczka, P. & Lohmann, B. Parametrierung von IDA-PBC über Zuweisung lokal linearer DynamikParametrization of IDA-PBC by Assignment of Local Linear Dynamics. auto 58, 38–48 (2010) – 10.1524/auto.2010.0813
- kotyczka, Transparent Dynamics Assignment for Nonlinear State Feedback Control (2011)