Large Signal Stabilization at System Level Using Port-Hamiltonian System Theory for Modular Islanded DC Microgrids
Authors
Cong Yuan, Jean-Philippe Martin, Serge Pierfederici, Emeric Vuillemin, Matheepot Phattanasak, Yigeng Huangfu
Abstract
No available
Citation
- Journal: IEEE Transactions on Industrial Electronics
- Year: 2025
- Volume: 72
- Issue: 11
- Pages: 11381–11394
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tie.2025.3561840
BibTeX
@article{Yuan_2025,
title={{Large Signal Stabilization at System Level Using Port-Hamiltonian System Theory for Modular Islanded DC Microgrids}},
volume={72},
ISSN={1557-9948},
DOI={10.1109/tie.2025.3561840},
number={11},
journal={IEEE Transactions on Industrial Electronics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Yuan, Cong and Martin, Jean-Philippe and Pierfederici, Serge and Vuillemin, Emeric and Phattanasak, Matheepot and Huangfu, Yigeng},
year={2025},
pages={11381--11394}
}References
- Zhang, Z., Fang, J., Dong, C., Jin, C. & Tang, Y. Enhanced Grid Frequency and DC-Link Voltage Regulation in Hybrid AC/DC Microgrids Through Bidirectional Virtual Inertia Support. IEEE Trans. Ind. Electron. 70, 6931–6940 (2023) – 10.1109/tie.2022.3203757
- Wang, X., Huang, J., Xu, Z., Zhang, C. & Guan, X. Real-World Scale Deployment of Hydrogen-Integrated Microgrid: Design and Control. IEEE Trans. Sustain. Energy 15, 2380–2392 (2024) – 10.1109/tste.2024.3418494
- Shi, W., Huangfu, Y., Xu, L. & Pang, S. Online energy management strategy considering fuel cell fault for multi-stack fuel cell hybrid vehicle based on multi-agent reinforcement learning. Applied Energy 328, 120234 (2022) – 10.1016/j.apenergy.2022.120234
- Xu, L. et al. A Review of DC Shipboard Microgrids—Part I: Power Architectures, Energy Storage, and Power Converters. IEEE Trans. Power Electron. 37, 5155–5172 (2022) – 10.1109/tpel.2021.3128417
- Wang, F., Wang, Y., Dong, Z. & Wang, S. Multiphase Low Stresses High Step-Up DC–DC Converter With Self-Balancing Capacitor Voltages and Self-Averaging Inductor Currents. IEEE Trans. Power Electron. 37, 6913–6926 (2022) – 10.1109/tpel.2021.3133613
- Wang, P., Zaery, M., Zhao, D., Wang, W. & Xu, D. Combined Control Strategy for Proportional Current Sharing in DC Microgrid Clusters. IEEE Trans. Ind. Electron. 70, 11251–11261 (2023) – 10.1109/tie.2022.3225852
- Lin, P., Zhang, C., Wang, J., Jin, C. & Wang, P. On Autonomous Large-Signal Stabilization for Islanded Multibus DC Microgrids: A Uniform Nonsmooth Control Scheme. IEEE Trans. Ind. Electron. 67, 4600–4612 (2020) – 10.1109/tie.2019.2931281
- Shi, W. et al. Coordinated frequency control strategy for modern power system considering engagement willingness. Energy Reports 12, 3584–3594 (2024) – 10.1016/j.egyr.2024.09.024
- Ding, L. & Tse, C. K. Large-Signal Stability Analysis of DC Distribution Systems With Cascading Converter Structure. IEEE Trans. Ind. Electron. 70, 9103–9111 (2023) – 10.1109/tie.2022.3206692
- Guan, Y., Xie, Y., Wang, Y., Liang, Y. & Wang, X. An Active Damping Strategy for Input Impedance of Bidirectional Dual Active Bridge DC–DC Converter: Modeling, Shaping, Design, and Experiment. IEEE Trans. Ind. Electron. 68, 1263–1274 (2021) – 10.1109/tie.2020.2969126
- Babaiahgari, B., Jeong, Y. & Park, J.-D. Dynamic Control of Region of Attraction Using Variable Inductor for Stabilizing DC Microgrids With Constant Power Loads. IEEE Trans. Ind. Electron. 68, 10218–10228 (2021) – 10.1109/tie.2020.3026270
- He, B. et al. A Generic Small-Signal Stability Criterion of DC Distribution Power System: Bus Node Impedance Criterion (BNIC). IEEE Trans. Power Electron. 37, 6116–6131 (2022) – 10.1109/tpel.2021.3131700
- Xu, Q., Xu, Y., Zhang, C. & Wang, P. A Robust Droop-Based Autonomous Controller for Decentralized Power Sharing in DC Microgrid Considering Large-Signal Stability. IEEE Trans. Ind. Inf. 16, 1483–1494 (2020) – 10.1109/tii.2019.2950208
- Li, X. et al. Toward Large-Signal Stabilization of Interleaved Floating Multilevel Boost Converter-Enabled High-Power DC Microgrids Supplying Constant Power Loads. IEEE Trans. Ind. Electron. 71, 857–869 (2024) – 10.1109/tie.2023.3243274
- Sadabadi, M. S. Line-Independent Plug-and-Play Voltage Stabilization and ℒ₂ Gain Performance of DC Microgrids. IEEE Control Syst. Lett. 5, 1609–1614 (2021) – 10.1109/lcsys.2020.3041335
- Han, R., Tucci, M., Martinelli, A., Guerrero, J. M. & Ferrari-Trecate, G. Stability Analysis of Primary Plug-and-Play and Secondary Leader-Based Controllers for DC Microgrid Clusters. IEEE Trans. Power Syst. 34, 1780–1800 (2019) – 10.1109/tpwrs.2018.2884876
- Ortega, R., Romero, J. G., Borja, P. & Donaire, A. PID Passivity‐Based Control of Nonlinear Systems with Applications. (2021) doi:10.1002/9781119694199 – 10.1002/9781119694199
- Loranca-Coutino, J. et al. Data-Driven Passivity-Based Control Design for Modular DC Microgrids. IEEE Trans. Ind. Electron. 69, 2545–2556 (2022) – 10.1109/tie.2021.3065615
- Chan-Zheng, C., Borja, P. & Scherpen, J. M. A. Tuning Rules for a Class of Passivity-Based Controllers for Mechanical Systems. IEEE Control Syst. Lett. 5, 1892–1897 (2021) – 10.1109/lcsys.2020.3044835
- Pang, S. et al. Stability Improvement of Cascaded Power Conversion Systems Based on Hamiltonian Energy Control Theory. IEEE Trans. on Ind. Applicat. 57, 1081–1093 (2021) – 10.1109/tia.2020.3038355
- Khefifi, N., Houari, A., Machmoum, M., Saim, A. & Ghanes, M. Generalized IDA-PBC Control Using Enhanced Decoupled Power Sharing for Parallel Distributed Generators in Standalone Microgrids. IEEE J. Emerg. Sel. Topics Power Electron. 9, 5069–5082 (2021) – 10.1109/jestpe.2020.3034464
- Pang, S. et al. Large-Signal Stable Nonlinear Control of DC/DC Power Converter With Online Estimation of Uncertainties. IEEE J. Emerg. Sel. Topics Power Electron. 9, 7355–7368 (2021) – 10.1109/jestpe.2020.3010895
- Thounthong, P. et al. Robust Hamiltonian Energy Control Based on Lyapunov Function for Four-Phase Parallel Fuel Cell Boost Converter for DC Microgrid Applications. IEEE Trans. Sustain. Energy 12, 1500–1511 (2021) – 10.1109/tste.2021.3050783
- Mungporn, P. et al. Modeling and Control of Multiphase Interleaved Fuel-Cell Boost Converter Based on Hamiltonian Control Theory for Transportation Applications. IEEE Trans. Transp. Electrific. 6, 519–529 (2020) – 10.1109/tte.2020.2980193
- Tan, P. et al. A Robust Faster Joint Control of a Direct-Drive Wave Energy Converter Combined With Supercapacitor and Battery Energy Storage. IEEE J. Emerg. Sel. Topics Power Electron. 11, 5417–5429 (2023) – 10.1109/jestpe.2023.3304370
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Pang, S. et al. Large-Signal Stabilization of Power Converters Cascaded Input Filter Using Adaptive Energy Shaping Control. IEEE Trans. Transp. Electrific. 7, 838–853 (2021) – 10.1109/tte.2020.3021954
- Martínez, L., Fernández, D. & Mantz, R. Passivity-based control for an isolated DC microgrid with hydrogen energy storage system. International Journal of Hydrogen Energy 67, 1262–1269 (2024) – 10.1016/j.ijhydene.2024.01.324
- Microgrid Energy Management with Energy Storage Systems: A Review. CSEE JPES https://doi.org/10.17775/cseejpes.2022.04290 (2023) doi:10.17775/cseejpes.2022.04290 – 10.17775/cseejpes.2022.04290
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Lapique, M. et al. Enhanced IDA-PBC Applied to a Three-Phase PWM Rectifier for Stable Interfacing Between AC and DC Microgrids Embedded in More Electrical Aircraft. IEEE Trans. Ind. Electron. 70, 995–1004 (2023) – 10.1109/tie.2022.3150079
- He, W. & Ortega, R. Design and Implementation of Adaptive Energy Shaping Control for DC–DC Converters With Constant Power Loads. IEEE Trans. Ind. Inf. 16, 5053–5064 (2020) – 10.1109/tii.2019.2953694
- Soriano-Rangel, C. A., He, W., Mancilla-David, F. & Ortega, R. Voltage Regulation in Buck–Boost Converters Feeding an Unknown Constant Power Load: An Adaptive Passivity-Based Control. IEEE Trans. Contr. Syst. Technol. 29, 395–402 (2021) – 10.1109/tcst.2019.2959535
- Wang, X. et al. Adaptive Voltage-Guaranteed Control of DC/DC-Buck-Converter-Interfaced DC Microgrids With Constant Power Loads. IEEE Trans. Ind. Electron. 71, 14926–14936 (2024) – 10.1109/tie.2024.3371003
- Wang, X. et al. Toward Balancing Dynamic Performance and System Stability for DC Microgrids: A New Decentralized Adaptive Control Strategy. IEEE Trans. Smart Grid 13, 3439–3451 (2022) – 10.1109/tsg.2022.3167425