Identification and data-driven reduced-order modeling for linear conservative port- and self-adjoint Hamiltonian systems
Authors
Paolo Rapisarda, Arjan van der Schaft
Abstract
Given a sufficiently numerous set of vector-exponential trajectories of a conservative port-Hamiltonian system and the supply rate, we compute a corresponding set of state trajectories by factorizing a constant Pick-like matrix. State equations are then obtained by solving a system of linear equations involving the system trajectories and the computed state ones. If a factorization of only a principal submatrix of the Pick matrix is performed, our procedure yields a lower-order conservative port-Hamiltonian model obtained by projection of the full-order one. We also describe a similar approach to identification and model-order reduction for self-adjoint Hamiltonian systems.
Citation
- Journal: 52nd IEEE Conference on Decision and Control
- Year: 2013
- Volume:
- Issue:
- Pages: 145–150
- Publisher: IEEE
- DOI: 10.1109/cdc.2013.6759873
BibTeX
@inproceedings{Rapisarda_2013,
title={{Identification and data-driven reduced-order modeling for linear conservative port- and self-adjoint Hamiltonian systems}},
DOI={10.1109/cdc.2013.6759873},
booktitle={{52nd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Rapisarda, Paolo and van der Schaft, Arjan},
year={2013},
pages={145--150}
}
References
- Willems, J. C. Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Contr. 36, 259–294 (1991) – 10.1109/9.73561
- Willems, J. C. & Trentelman, H. L. On Quadratic Differential Forms. SIAM J. Control Optim. 36, 1703–1749 (1998) – 10.1137/s0363012996303062
- van der schaft, The hamiltonian formulation of energy conserving physical systems with external ports. Archiv fur Elektronik und Ubertragungstechnik (1995)
- van der Schaft, A. & Rapisarda, P. State Maps from Integration by Parts. SIAM J. Control Optim. 49, 2415–2439 (2011) – 10.1137/100806825
- Rapisarda, P. & Willems, J. C. State Maps for Linear Systems. SIAM J. Control Optim. 35, 1053–1091 (1997) – 10.1137/s0363012994268412
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Rapisarda, P. & Trentelman, H. L. Identification and data-driven model reduction of state-space representations of lossless and dissipative systems from noise-free data. Automatica 47, 1721–1728 (2011) – 10.1016/j.automatica.2011.02.048
- Ball, J. A., Gohberg, I. & Rodman, L. Interpolation of Rational Matrix Functions. (Birkhäuser Basel, 1990). doi:10.1007/978-3-0348-7709-1 – 10.1007/978-3-0348-7709-1
- Baker, E. S. & DeGroat, R. D. A correlation-based subspace tracking algorithm. IEEE Trans. Signal Process. 46, 3112–3116 (1998) – 10.1109/78.726827
- Astolfi, A. Model Reduction by Moment Matching for Linear and Nonlinear Systems. IEEE Trans. Automat. Contr. 55, 2321–2336 (2010) – 10.1109/tac.2010.2046044
- polderman, Introduction to Mathematical System Theory A Behavioral Approach (1997)
- golub, Matrix Computations (1983)
- Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- Dopico, F. M. & Koev, P. Accurate Symmetric Rank Revealing and Eigendecompositions of Symmetric Structured Matrices. SIAM J. Matrix Anal. & Appl. 28, 1126–1156 (2006) – 10.1137/050633792
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- Van Overschee, P. & De Moor, B. Subspace Identification for Linear Systems. (Springer US, 1996). doi:10.1007/978-1-4613-0465-4 – 10.1007/978-1-4613-0465-4
- Hansen, P. C. & Yalamov, P. Y. Computing Symmetric Rank-Revealing Decompositions via Triangular Factorization. SIAM J. Matrix Anal. & Appl. 23, 443–458 (2001) – 10.1137/s0895479800370068