Authors

Kenji Fujimoto, Jacquelien M.A. Scherpen, W. Steven Gray

Abstract

This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel operators, and controllability and observability functions will be derived based on it. Furthermore a duality between the controllability and observability functions will be proven. The statespace realizations ofsuch operators provide new insights to nonlinear control systems theory.

Keywords

adjoint operators, hamiltonian control systems, hamiltonian extensions, legendre transformations, nonlinear control systems

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2000
  • Volume: 33
  • Issue: 2
  • Pages: 39–44
  • Publisher: Elsevier BV
  • DOI: 10.1016/s1474-6670(17)35544-1
  • Note: IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Princeton, NJ, USA, 16-18 March 2000

BibTeX

@article{Fujimoto_2000,
  title={{Hamiltonian Realizations of Nonlinear Adjoint Operators}},
  volume={33},
  ISSN={1474-6670},
  DOI={10.1016/s1474-6670(17)35544-1},
  number={2},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={Fujimoto, Kenji and Scherpen, Jacquelien M.A. and Steven Gray, W.},
  year={2000},
  pages={39--44}
}

Download the bib file

References

  • Arnold, (1989)
  • Ball, J. A. & Van der Schaft, A. J. J-inner-outer factorization, J-spectral factorization, and robust control for nonlinear systems. IEEE Trans. Automat. Contr. 41, 379–392 (1996) – 10.1109/9.486639
  • Batt, J. Nonlinear compact mappings and their adjoints. Math. Ann. 189, 5–25 (1970) – 10.1007/bf01350197
  • Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
  • Fliess, Matrices de hankel. J. Math. Pures. Appl (1974)
  • Fujimoto, Canonical transformation and stabilization of generalized hamiltonian systems. Preliminary version is in Proc. 4th IFAC Symp. NOLCOS’98 (1998)
  • Gray, Hankel operators and gramians for nonlinear systems. Proc. 37th IEEE Conf. on Decision and Control (1998)
  • Gray, (siam) hankel operators and gramians for nonlinear systems (1999)
  • Isidori, (1995)
  • Maschke, Portcontrolled hamiltonian systems: modelling origins and system-theoretic properties. IFAC Symp. NOLCOS (1992)
  • Scherpen, J. M. A. Balancing for nonlinear systems. Systems & Control Letters 21, 143–153 (1993) – 10.1016/0167-6911(93)90117-o
  • SCHERPEN, J. M. A. & VAN DER SCHAFT, A. J. Normalized coprime factorizations and balancing for unstable nonlinear systems. International Journal of Control 60, 1193–1222 (1994) – 10.1080/00207179408921517
  • Scherpen, On singular value functions and hankel operators for nonlinear systems. Proc. ACC’99 (1999)
  • Zhou, (1996)