Authors

Dongbing Tong, Wuneng Zhou, Yan Gao, Chuan Ji, Hongye Su

Abstract

This paper is concerned with the problem of H ∞ model reduction for the linear port-controlled Hamiltonian systems. The development includes both the continuous- and discrete-time cases. Some sufficient conditions are obtained for the existence of solutions in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint set. In addition, an explicit parametrization of the desired reduced-order model can be constructed if these conditions are satisfied. Furthermore, the conditions based on the strict LMIs without rank constraint are derived for the zeroth-order H ∞ approximation problem. Finally, the effectiveness of the proposed model reduction method is illustrated via a practical example.

Keywords

Model reduction; Port-controlled Hamiltonian system; H ∞ performance; Continuous-time; Discrete-time

Citation

  • Journal: Applied Mathematical Modelling
  • Year: 2013
  • Volume: 37
  • Issue: 5
  • Pages: 2727–2736
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.apm.2012.06.031

BibTeX

@article{Tong_2013,
  title={{<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> model reduction for port-controlled Hamiltonian systems}},
  volume={37},
  ISSN={0307-904X},
  DOI={10.1016/j.apm.2012.06.031},
  number={5},
  journal={Applied Mathematical Modelling},
  publisher={Elsevier BV},
  author={Tong, Dongbing and Zhou, Wuneng and Gao, Yan and Ji, Chuan and Su, Hongye},
  year={2013},
  pages={2727--2736}
}

Download the bib file

References