From Dirac structure to state model: identification of linear time-varying port-Hamiltonian systems
Authors
Edward Branford, Paolo Rapisarda
Abstract
We use energy conservation and power flows in port-Hamiltonian systems to develop a system identification procedure for linear time-varying systems. The basic idea is to use external energy flows to obtain information on internal energy storage, and hence state trajectories. Given N input and output trajectories (uk, yk ), k = 1, … , N of a linear port- Hamiltonian system, and additional information on resistive variables, a set of state trajectories xk, k = 1, …, N is computed via factorisation of a matrix of functions constructed from the external information. The basis transformation associated with a canonical factorisation of this matrix is discussed.
Citation
- Journal: 2019 IEEE 58th Conference on Decision and Control (CDC)
- Year: 2019
- Volume:
- Issue:
- Pages: 2666–2671
- Publisher: IEEE
- DOI: 10.1109/cdc40024.2019.9030136
BibTeX
@inproceedings{Branford_2019,
title={{From Dirac structure to state model: identification of linear time-varying port-Hamiltonian systems}},
DOI={10.1109/cdc40024.2019.9030136},
booktitle={{2019 IEEE 58th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Branford, Edward and Rapisarda, Paolo},
year={2019},
pages={2666--2671}
}
References
- Rapisarda, P. & van der Schaft, A. Identification and data-driven reduced-order modeling for linear conservative port- and self-adjoint Hamiltonian systems. 52nd IEEE Conference on Decision and Control 145–150 (2013) doi:10.1109/cdc.2013.6759873 – 10.1109/cdc.2013.6759873
- Schöberl, M. & Schlacher, K. On an intrinsic formulation of time-variant Port Hamiltonian systems. Automatica 48, 2194–2200 (2012) – 10.1016/j.automatica.2012.06.014
- Shokoohi, S. & Silverman, L. M. Identification and model reduction of time-varying discrete-time systems. Automatica 23, 509–521 (1987) – 10.1016/0005-1098(87)90080-x
- Silverman, L. M. & Meadows, H. E. Controllability and Observability in Time-Variable Linear Systems. SIAM Journal on Control 5, 64–73 (1967) – 10.1137/0305005
- van der schaft, Port-Hamiltonian systems an introductory survey (2006)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Verhaegen, M. & Yu, X. A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems. Automatica 31, 201–216 (1995) – 10.1016/0005-1098(94)00091-v
- Rapisarda, P. On the Identification of Self-Adjoint Linear Time-Varying State Models. IFAC-PapersOnLine 51, 251–256 (2018) – 10.1016/j.ifacol.2018.09.143
- Bruschetta, M., Picci, G. & Saccon, A. A variational integrators approach to second order modeling and identification of linear mechanical systems. Automatica 50, 727–736 (2014) – 10.1016/j.automatica.2013.12.012
- rapisarda, Bilinear differential forms and the Loewner framework for rational interpolation (2015)
- Rapisarda, P. & Antoulas, A. C. State-Space Modeling of Two-Dimensional Vector-Exponential Trajectories. SIAM J. Control Optim. 54, 2734–2753 (2016) – 10.1137/15m1031837
- Rapisarda, P. & Rao, S. Realization of Lossless Systems Via Constant Matrix Factorizations. IEEE Trans. Automat. Contr. 58, 2632–2636 (2013) – 10.1109/tac.2013.2254640
- Rapisarda, P. & Antoulas, A. C. A duality perspective on Loewner rational interpolation and state-space modelling of vector-exponential trajectories. 2015 54th IEEE Conference on Decision and Control (CDC) 2096–2100 (2015) doi:10.1109/cdc.2015.7402516 – 10.1109/cdc.2015.7402516
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3
- Anderson, B. & Moylan, P. Synthesis of linear time-varying passive networks. IEEE Trans. Circuits Syst. 21, 678–687 (1974) – 10.1109/tcs.1974.1083926
- Rapisarda, P. & Trentelman, H. L. Identification and data-driven model reduction of state-space representations of lossless and dissipative systems from noise-free data. Automatica 47, 1721–1728 (2011) – 10.1016/j.automatica.2011.02.048