Authors

Cristian Secchi, Cesare Fantuzzi

Abstract

In this Chapter we address the problem of formation control of a group of robots that exchange information over a communication network characterized by a non negligible delay. We consider the Virtual Body Artificial Potential approach for stabilizing a group of robots at a desired formation. We show that it is possible to model the controlled group of robots as a port-Hamiltonian system and we exploit the scattering framework to achieve a passive behavior of the controlled system and to stabilize the robots in the desired formation independently of any communication delay.

Keywords

Formation Control; Communication Delay; Dirac Structure; Interconnection Structure; Coordinate Agent

Citation

BibTeX

@inbook{Secchi_2009,
  title={{Formation Control over Delayed Communication Network}},
  ISBN={9783642031991},
  ISSN={1860-0840},
  DOI={10.1007/978-3-642-03199-1_4},
  booktitle={{Modelling, Estimation and Control of Networked Complex Systems}},
  publisher={Springer Berlin Heidelberg},
  author={Secchi, Cristian and Fantuzzi, Cesare},
  year={2009},
  pages={59--74}
}

Download the bib file

References

  • Couzin, I. Collective minds. Nature vol. 445 715–715 (2007) – 10.1038/445715a
  • Dunbar, W. B. & Murray, R. M. Distributed receding horizon control for multi-vehicle formation stabilization. Automatica vol. 42 549–558 (2006) – 10.1016/j.automatica.2005.12.008
  • Fax, J. A. & Murray, R. M. Information Flow and Cooperative Control of Vehicle Formations. IEEE Transactions on Automatic Control vol. 49 1465–1476 (2004) – 10.1109/tac.2004.834433
  • Fiorelli, E.: Cooperative vehicle control, feature tracking and ocean sampling, Ph.D. dissertation, Princeton University (2005)
  • D. Karnopp. Karnopp, D., Margolis, D., Rosenberg, R.: System Dynamics: A Unified Approach, 2nd edn. John Wiley & Sons Inc., Chichester (1990) (1990)
  • Leonard, N. E. & Fiorelli, E. Virtual leaders, artificial potentials and coordinated control of groups. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 3 2968–2973 – 10.1109/cdc.2001.980728
  • Murray, R. M. Recent Research in Cooperative Control of Multivehicle Systems. Journal of Dynamic Systems, Measurement, and Control vol. 129 571–583 (2007) – 10.1115/1.2766721
  • Niemeyer, G. & Slotine, J.-J. E. Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering vol. 16 152–162 (1991) – 10.1109/48.64895
  • Ogren, P., Fiorelli, E. & Leonard, N. E. Cooperative Control of Mobile Sensor Networks: Adaptive Gradient Climbing in a Distributed Environment. IEEE Transactions on Automatic Control vol. 49 1292–1302 (2004) – 10.1109/tac.2004.832203
  • Ren, W. & Beard, R. W. Formation feedback control for multiple spacecraft via virtual structures. IEE Proceedings - Control Theory and Applications vol. 151 357–368 (2004) – 10.1049/ip-cta:20040484
  • Information consensus in multivehicle cooperative control. IEEE Control Systems vol. 27 71–82 (2007) – 10.1109/mcs.2007.338264
  • C. Secchi. Secchi, C., Stramigioli, S., Fantuzzi, C.: Control of Interactive Robotic Interfaces: a port-Hamiltonian Approach. Springer Tracts in Advanced Robotics. Springer, Heidelberg (2007) (2007)
  • Stramigioli, S., van der Schaft, A., Maschke, B. & Melchiorri, C. Geometric scattering in robotic telemanipulation. IEEE Transactions on Robotics and Automation vol. 18 588–596 (2002)10.1109/tra.2002.802200
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7