Finite-time port-controlled Hamiltonian design for second-order dynamical systems
Authors
Saeed Rafee Nekoo, Begoña C. Arrue, Anibal Ollero
Abstract
Finite-time design is not common in classical controllers, and the ones in the literature are not usually robust. The state-dependent differential Riccati equation (SDDRE) is an optimal nonlinear design in the company of a finite-horizon cost function that manipulates the terminal time using a weighting matrix of states. This method is sensitive to parametric model uncertainty, though its finite time characteristics can be augmented with other controllers. Port-controlled Hamiltonian (PCH) design can present a robust control law by defining the desired inertia matrix in the reference Hamiltonian function. The PCH is not finite-time; however, it can be modified using the suboptimal gain of the SDDRE controller. This paper combines the SDDRE and the PCH design to present a novel nonlinear controller with both finite-time and robust behavior toward parameter uncertainty in modeling. The finite-time behavior refers to the capability of controlling a system with different final times, as the input parameter to the system (or finishing a control task in a predefined time). The analytical stability proof of the proposed input law has been addressed using Lyapunov’s second method. The modified PCH is applied to second-order dynamical systems; as an illustrative example, a two-degree-of-freedom (DoF) inverted pendulum has been simulated and compared with a proportional–derivative (PD) control and a PCH with constant PD gains. A four-DoF robot arm was also simulated to highlight the application of the proposed method on complex systems. The introduced method outperformed the classical ones and showed finite-time regulation with different terminal times.
Keywords
Port-controlled Hamiltonian controller; SDRE; SDDRE; Finite time; Nonlinear optimal control
Citation
- Journal: Journal of the Franklin Institute
- Year: 2025
- Volume: 362
- Issue: 12
- Pages: 107834
- Publisher: Elsevier BV
- DOI: 10.1016/j.jfranklin.2025.107834
BibTeX
@article{Nekoo_2025,
title={{Finite-time port-controlled Hamiltonian design for second-order dynamical systems}},
volume={362},
ISSN={0016-0032},
DOI={10.1016/j.jfranklin.2025.107834},
number={12},
journal={Journal of the Franklin Institute},
publisher={Elsevier BV},
author={Nekoo, Saeed Rafee and Arrue, Begoña C. and Ollero, Anibal},
year={2025},
pages={107834}
}
References
- Pacana, A. & Siwiec, D. Method of Determining Sequence Actions of Products Improvement. Materials 15, 6321 (2022) – 10.3390/ma15186321
- Dwivedi, Prediction of high-level actions from the sequence of atomic actions in assembly line workstations. (2024)
- Gelen, G. & Uzam, M. The synthesis and PLC implementation of hybrid modular supervisors for real time control of an experimental manufacturing system. Journal of Manufacturing Systems 33, 535–550 (2014) – 10.1016/j.jmsy.2014.04.008
- Murshalin, Efficient control and automation: Exploring siemens LOGO PLC and PLC-based industrial timer controllers. Asian J. Appl. Sci. Technol. ( AJAST) (2024)
- Zhang, X. & Hou, Z. Data-driven predictive point-to-point iterative learning control. Neurocomputing 518, 431–439 (2023) – 10.1016/j.neucom.2022.11.014
- M.A., A. & Saleem, A. Quadrotor Modeling Approaches and Trajectory Tracking Control Algorithms: A Review. IJRCS 4, 401–426 (2024) – 10.31763/ijrcs.v4i1.1324
- Ahmed, S. & Azar, A. T. Adaptive fractional tracking control of robotic manipulator using fixed-time method. Complex Intell. Syst. 10, 369–382 (2023) – 10.1007/s40747-023-01164-7
- Techy, L. & Woolsey, C. A. Minimum-Time Path Planning for Unmanned Aerial Vehicles in Steady Uniform Winds. Journal of Guidance, Control, and Dynamics 32, 1736–1746 (2009) – 10.2514/1.44580
- Sun, R., Zhou, Z. & Zhu, X. Finite-time terminal sliding mode attitude control for tailless full-wing configuration UAVs based on extended state observers and auxiliary compensators. ISA Transactions 144, 282–307 (2024) – 10.1016/j.isatra.2023.10.024
- Li, F., Wu, X., Zhao, Y. & Ke, L. Finite time disturbance observer design and Lyapunov-based control design for overhead cranes with double-pendulum dynamics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 238, 4283–4293 (2023) – 10.1177/09544062231214618
- Liu, J. & Liu, Z. Finite-time block backstepping control for rudder roll stabilization with input constraints. Ocean Engineering 295, 116989 (2024) – 10.1016/j.oceaneng.2024.116989
- Sun, Y., Chen, B., Lin, C. & Wang, H. Finite-Time Adaptive Control for a Class of Nonlinear Systems With Nonstrict Feedback Structure. IEEE Trans. Cybern. 48, 2774–2782 (2018) – 10.1109/tcyb.2017.2749511
- Tharanidharan, V., Sakthivel, R., Ren, Y. & Marshal Anthoni, S. Robust finite-time PID control for discrete-time large-scale interconnected uncertain system with discrete-delay. Mathematics and Computers in Simulation 192, 370–383 (2022) – 10.1016/j.matcom.2021.08.024
- Abel-Gaid, S. H., Qamlo, A. H. & Mohamed, B. G. Bang-Bang Property and Time-Optimal Control for Caputo Fractional Differential Systems. Fractal Fract 8, 84 (2024) – 10.3390/fractalfract8020084
- Sinha, Minimum-time control of a linear system with input saturation: A practical approach. ASME Lett. Dyn. Syst. Control. (2025)
- Kabanov, Modified SDRE method for finite-time nonlinear optimal control problem. (2022)
- Krolicki, Finite time nonlinear optimal control using koopman eigenfunctions. (2023)
- Yamamoto, K., Fujimoto, K. & Maruta, I. Guaranteed Pseudospectral Sequential Convex Programming for Accurate Solutions to Constrained Optimal Control Problems. IEEE Control Syst. Lett. 8, 1823–1828 (2024) – 10.1109/lcsys.2024.3417173
- Yao, J. & Xin, M. Finite‐time sub‐optimal control design for control affine nonlinear systems. Intl J Robust & Nonlinear 33, 7045–7070 (2023) – 10.1002/rnc.6735
- Yao, J. & Xin, M. Finite-Horizon Near-Optimal Approach and Landing Planning of Reusable Launch Vehicles. Journal of Guidance, Control, and Dynamics 46, 571–580 (2023) – 10.2514/1.g006899
- Lin, Q., Loxton, R. & Lay Teo, K. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization 10, 275–309 (2014) – 10.3934/jimo.2014.10.275
- Sforni, Learning-driven nonlinear optimal control via gaussian process regression. (2021)
- Rigatos, Nonlinear optimal control for free-floating space robotic manipulators. Spacecr. Satell. (2024)
- Lin, Z. et al. Policy-Iteration-Based Finite-Horizon Approximate Dynamic Programming for Continuous-Time Nonlinear Optimal Control. IEEE Trans. Neural Netw. Learning Syst. 34, 5255–5267 (2023) – 10.1109/tnnls.2022.3225090
- Wang, D., Liu, D., Li, H. & Ma, H. Neural-network-based robust optimal control design for a class of uncertain nonlinear systems via adaptive dynamic programming. Information Sciences 282, 167–179 (2014) – 10.1016/j.ins.2014.05.050
- Sereshki, Z. T., Talebi, H. A. & Abdollahi, F. A Nonlinear Adaptive $H_{\infty }$ Optimal Control Method Without Solving HJIE: An Analytical Approach. IEEE Trans. Automat. Contr. 69, 4126–4133 (2024) – 10.1109/tac.2024.3352447
- Pham, D.-B., Dao, Q.-T., Bui, N.-T. & Nguyen, T.-V.-A. Robust-optimal control of rotary inverted pendulum control through fuzzy descriptor-based techniques. Sci Rep 14, (2024) – 10.1038/s41598-024-56202-2
- Zhang, Prescribed-time adaptive fuzzy optimal control for nonlinear systems. IEEE Trans. Fuzzy Syst. (2024)
- Hu, Y., Li, S., Xiao, Y. & Azam, M. A. Optimal consensus control of dynamically interconnected multi-agent systems: A SDRE approach for efficient and stable operation. Applied Mathematical Modelling 138, 115727 (2025) – 10.1016/j.apm.2024.115727
- Korayem, M. H. & Lademakhi, N. Y. Integrated nonlinear suboptimal control‐and‐estimator based on the state‐dependent differential Riccati equation approach. Optim Control Appl Methods 44, 1716–1733 (2022) – 10.1002/oca.2946
- Nekoo, Finite-time and infinite-time horizon state-dependent Riccati equation for swinging-up and control of a rotary drone pendulum. (2024)
- Li, B., Gao, X., Huang, H. & Yang, H. Nonlinear trajectory tracking control of underactuated AUVs using the state-dependent Riccati equation (SDRE) with parameter perturbation. Nonlinear Dyn 111, 18027–18041 (2023) – 10.1007/s11071-023-08778-z
- Marufkhani, Detection and estimation of fault on planar cable-driven parallel robot: SDRE approach. (2023)
- Elhami, Comparison of SDRE and SMC control approaches for flutter suppression in a nonlinear wing section. (2012)
- Salamci, M. U. & Gökbilen, B. SDRE MISSILE AUTOPILOT DESIGN USING SLIDING MODE CONTROL WITH MOVING SLIDING SURFACES. IFAC Proceedings Volumes 40, 768–773 (2007) – 10.3182/20070625-5-fr-2916.00131
- Pang, Global robust optimal sliding mode control for a class of affine nonlinear systems with uncertainties based on SDRE. (2009)
- Roveda, L. & Piga, D. Robust state dependent Riccati equation variable impedance control for robotic force-tracking tasks. Int J Intell Robot Appl 4, 507–519 (2020) – 10.1007/s41315-020-00153-0
- Nasiri, N., Fakharian, A. & Menhaj, M. B. Observer-based robust control for flexible-joint robot manipulators: A state-dependent Riccati equation-based approach. Transactions of the Institute of Measurement and Control 42, 3135–3155 (2020) – 10.1177/0142331220941653
- Nekoo, S. R. & Ollero, A. A robust state-dependent Riccati equation controller with parameter uncertainty and matched disturbance. Journal of the Franklin Institute 360, 14584–14595 (2023) – 10.1016/j.jfranklin.2023.11.023
- Acosta, Robust control of underactuated aerial manipulators via IDA-PBC. (2014)
- Van Der Schaft, Port-Hamiltonian systems: an introductory survey. (2006)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information 37, 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Macchelli, A. Control Design for a Class of Discrete-Time Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 68, 8224–8231 (2023) – 10.1109/tac.2023.3292180
- Fu, B., Wang, X. & Wang, Q. Protocol design for group output consensus of disturbed port-controlled Hamiltonian multi-agent systems. Journal of the Franklin Institute 358, 9867–9889 (2021) – 10.1016/j.jfranklin.2021.10.006
- Fahmi, J.-M. & Woolsey, C. A. Port-Hamiltonian Flight Control of a Fixed-Wing Aircraft. IEEE Trans. Contr. Syst. Technol. 30, 408–415 (2022) – 10.1109/tcst.2021.3059928
- Wei, A., Wang, Z., Mu, R. & Zhang, X. Finite‐time adaptive control for port‐controlled Hamiltonian systems with parametric perturbations. Adaptive Control & Signal 36, 802–817 (2022) – 10.1002/acs.3373
- Wang, Finite-time stabilization of port-controlled Hamiltonian systems with application to nonlinear affine systems. (2008)
- Wang, Z.-M., Zhao, X., Li, X. & Wei, A. Finite-time adaptive control for uncertain switched port-controlled Hamiltonian systems. Communications in Nonlinear Science and Numerical Simulation 119, 107129 (2023) – 10.1016/j.cnsns.2023.107129
- Yesudhas, A. A., Palanimuthu, K., Lee, S. R., Jeong, J. H. & Joo, Y. H. Performance enhancement of PMSG-based WECS using robust adaptive fuzzy sliding mode control. Control Engineering Practice 156, 106211 (2025) – 10.1016/j.conengprac.2024.106211
- Wang, Y., Lu, X., Gao, Y. & Chen, Y. An anti-swing control method combining deep learning prediction models with a multistate fractional-order terminal sliding mode controller for wave motion compensation devices. Mechanical Systems and Signal Processing 223, 111819 (2025) – 10.1016/j.ymssp.2024.111819
- Chen, Z. & Duan, G. A fully actuated system approach: Desired compensation adaptive robust control for uncertain nonlinear systems. Journal of the Franklin Institute 361, 106855 (2024) – 10.1016/j.jfranklin.2024.106855
- Nekoo, S. R., Acosta, J. Á. & Ollero, A. Gravity compensation and optimal control of actuated multibody system dynamics. IET Control Theory & Appl 16, 79–93 (2021) – 10.1049/cth2.12206
- Bhat, S. P. & Bernstein, D. S. Finite-Time Stability of Continuous Autonomous Systems. SIAM J. Control Optim. 38, 751–766 (2000) – 10.1137/s0363012997321358
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Arakelian, V. Gravity compensation in robotics. Advanced Robotics 30, 79–96 (2015) – 10.1080/01691864.2015.1090334
- Ma, Gravity based autonomous calibration for robot manipulators. (1994)
- Nekoo, S. R. Tutorial and Review on the State-dependent Riccati Equation. JAND 8, 109–166 (2019) – 10.5890/jand.2019.06.001
- Nekoo, Combination of terminal sliding mode and finite-time state-dependent Riccati equation: Flapping-wing flying robot control. Proc. Inst. Mech. Eng. Part I: J. Syst. Control. Eng. (2023)
- Nekoo, S. R., Acosta, J. A., Heredia, G. & Ollero, A. A PD-Type State-Dependent Riccati Equation With Iterative Learning Augmentation for Mechanical Systems. IEEE/CAA J. Autom. Sinica 9, 1499–1511 (2022) – 10.1109/jas.2022.105533
- Korayem, M. H. & Nekoo, S. R. Finite-time state-dependent Riccati equation for time-varying nonaffine systems: Rigid and flexible joint manipulator control. ISA Transactions 54, 125–144 (2015) – 10.1016/j.isatra.2014.06.006
- Nguyen, Solving the matrix differential Riccati equation: a Lyapunov equation approach. IEEE Trans. Autom. Control (2009)
- Shamma, J. S. & Cloutier, J. R. Existence of SDRE stabilizing feedback. IEEE Trans. Automat. Contr. 48, 513–517 (2003) – 10.1109/tac.2002.808473
- Cisneros, N., Rojas, A. J. & Ramirez, H. Port-Hamiltonian Modeling and Control of a Micro-Channel Experimental Plant. IEEE Access 8, 176935–176946 (2020) – 10.1109/access.2020.3026653
- Nekoo, S. R. & Ollero, A. Closed-loop nonlinear optimal control design for flapping-wing flying robot (1.6 m wingspan) in indoor confined space: Prototyping, modeling, simulation, and experiment. ISA Transactions 142, 635–652 (2023) – 10.1016/j.isatra.2023.08.001
- Suarez, A., Nekoo, S. R. & Ollero, A. Ultra-lightweight anthropomorphic dual-arm rolling robot for dexterous manipulation tasks on linear infrastructures: A self-stabilizing system. Mechatronics 94, 103021 (2023) – 10.1016/j.mechatronics.2023.103021
- Korayem, M. H. & Nekoo, S. R. Controller design of cooperative manipulators using state-dependent Riccati equation. Robotica 36, 484–515 (2017) – 10.1017/s0263574717000522
- Rafee Nekoo, Experimental implementation of state-dependent Riccati equation control on quadrotors. Drone Syst. Appl. (2025)
- Korayem, Nonlinear optimal control via finite time horizon state-dependent Riccati equation. (2014)