Fault-tolerant formation control of wheeled mobile robots using energy-balancing methods
Authors
Ilaria Paglianti, Andrea Cristofaro
Abstract
The problem of fault-tolerant formation control for a team of wheeled robots is addressed. The multi-agent network is represented as the passive interconnection of port-Hamiltonian systems, and trajectory-tracking is achieved by using passivity arguments. Two fault-tolerant control strategies have been proposed, depending on the fault severity: a soft one, consisting in lowering the control burden, and a hard one, corresponding to formation reconfiguration.
Citation
- Journal: 2022 European Control Conference (ECC)
- Year: 2022
- Volume:
- Issue:
- Pages: 472–477
- Publisher: IEEE
- DOI: 10.23919/ecc55457.2022.9838156
BibTeX
@inproceedings{Paglianti_2022,
title={{Fault-tolerant formation control of wheeled mobile robots using energy-balancing methods}},
DOI={10.23919/ecc55457.2022.9838156},
booktitle={{2022 European Control Conference (ECC)}},
publisher={IEEE},
author={Paglianti, Ilaria and Cristofaro, Andrea},
year={2022},
pages={472--477}
}
References
- kamel, Real-time fault-tolerant formation control of multiple WMRs based on hybrid GA-PSO algorithm. IEEE Transactions on Automation Science and Engineering (2020)
- Nair, R. R., Karki, H., Shukla, A., Behera, L. & Jamshidi, M. Fault-Tolerant Formation Control of Nonholonomic Robots Using Fast Adaptive Gain Nonsingular Terminal Sliding Mode Control. IEEE Systems Journal 13, 1006–1017 (2019) – 10.1109/jsyst.2018.2794418
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory Tracking Control of Nonholonomic Hamiltonian Systems via Generalized Canonical Transformations. European Journal of Control 10, 421–431 (2004) – 10.3166/ejc.10.421-431
- brockett, Asymptotic stability and feedback stabilization. Differential Geometric Control Theory (1983)
- Mesbahi, M. & Egerstedt, M. Graph Theoretic Methods in Multiagent Networks. (2010) doi:10.1515/9781400835355 – 10.1515/9781400835355
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Robuffo Giordano, P., Franchi, A., Secchi, C. & Bülthoff, H. H. A passivity-based decentralized strategy for generalized connectivity maintenance. The International Journal of Robotics Research 32, 299–323 (2013) – 10.1177/0278364912469671
- mondada, The e-puck, a robot designed for education in engineering. Proc of the 9th Conf on Aut Robot Sys and Comp (0)
- Oriolo, G., De Luca, A. & Vendittelli, M. WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Trans. Contr. Syst. Technol. 10, 835–852 (2002) – 10.1109/tcst.2002.804116
- Lawton, J. R. T., Beard, R. W. & Young, B. J. A decentralized approach to formation maneuvers. IEEE Trans. Robot. Automat. 19, 933–941 (2003) – 10.1109/tra.2003.819598
- Ghabcheloo, R., Pascoal, A., Silvestre, C. & Kaminer, I. Coordinated path following control of multiple wheeled robots using linearization techniques. International Journal of Systems Science 37, 399–414 (2006) – 10.1080/00207720500438324
- Do, K. D. & Pan, J. Nonlinear formation control of unicycle-type mobile robots. Robotics and Autonomous Systems 55, 191–204 (2007) – 10.1016/j.robot.2006.09.001
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Vos, E., Scherpen, J. M. A., Schaft, A. J. van der & Postma, A. Formation Control of Wheeled Robots in the Port-Hamiltonian Framework. IFAC Proceedings Volumes 47, 6662–6667 (2014) – 10.3182/20140824-6-za-1003.00394
- Simonin, O. & Grunder, O. A cooperative multi-robot architecture for moving a paralyzed robot. Mechatronics 19, 463–470 (2009) – 10.1016/j.mechatronics.2008.11.006
- Parker, L. E. & Emmons, B. A. Cooperative multi-robot observation of multiple moving targets. Proceedings of International Conference on Robotics and Automation vol. 3 2082–2089 – 10.1109/robot.1997.619270
- blanke, Diagnosis and Fault-Tolerant Control (2006)