Extended Casimir Approach to Controlled Hamiltonian Systems
Authors
Abstract
In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H _∞ control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.
Keywords
casimir function, control, energy-shaping, input-to-state stabilization
Citation
- Journal: Journal of Systems Science and Complexity
- Year: 2006
- Volume: 19
- Issue: 2
- Pages: 211–218
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11424-006-0211-4
BibTeX
@article{Guo_2006,
title={{Extended Casimir Approach to Controlled Hamiltonian Systems}},
volume={19},
ISSN={1559-7067},
DOI={10.1007/s11424-006-0211-4},
number={2},
journal={Journal of Systems Science and Complexity},
publisher={Springer Science and Business Media LLC},
author={Guo, Yuqian and Cheng, Daizhan},
year={2006},
pages={211--218}
}References
- Cheng, D., Astolfi, A. & Ortega, R. On feedback equivalence to port controlled Hamiltonian systems. Systems & Control Letters 54, 911–917 (2005) – 10.1016/j.sysconle.2005.02.005
- Cheng, D., Xi, Z., Lu, Q. & Mei, S. Geometric structure of generalized controlled Hamiltonian systems and its application. Sci. China Ser. E-Technol. Sci. 43, 365–379 (2000) – 10.1007/bf02916984
- Wang, Y., Li, C. & Cheng, D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica 39, 1437–1443 (2003) – 10.1016/s0005-1098(03)00132-8
- Wang, Y., Cheng, D. & Hu, X. Problems on time-varying port-controlled Hamiltonian systems: geometric structure and dissipative realization. Automatica 41, 717–723 (2005) – 10.1016/j.automatica.2004.11.006
- A. J. van der Schaft, L 2-Gain and Passivity Techniques in Nonlinear Control (1999)
- van der Schaft, A. J. L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control. IEEE Trans. Automat. Contr. 37, 770–784 (1992) – 10.1109/9.256331
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Cheng, D. & Spurgeon, S. Stabilization of Hamiltonian systems with dissipation. International Journal of Control 74, 465–473 (2001) – 10.1080/00207170010010551
- Xi, Z. & Cheng, D. Passivity-based stabilization and H 8 control of the Hamiltonian control systems with dissipation and its applications to power systems. International Journal of Control 73, 1686–1691 (2000) – 10.1080/00207170050201762
- Shen, T., Ortega, R., Lu, Q., Mei, S. & Tamura, K. Adaptive L2 Disturbance Attenuation Of Hamiltonian Systems With Parametric Perturbation And Application To Power Systems. Asian Journal of Control 5, 143–152 (2003) – 10.1111/j.1934-6093.2003.tb00105.x
- Zairong Xi, Feng, G., Daizhan Cheng & Qiang Lu. Nonlinear decentralized saturated controller design for power systems. IEEE Trans. Contr. Syst. Technol. 11, 539–547 (2003) – 10.1109/tcst.2003.813404
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
- Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Trans. Automat. Contr. 50, 60–75 (2005) – 10.1109/tac.2004.840477
- Xi, Z., Cheng, D., Lu, Q. & Mei, S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38, 527–534 (2002) – 10.1016/s0005-1098(01)00233-3
- Isidori, A. Nonlinear Control Systems II. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0549-7 – 10.1007/978-1-4471-0549-7
- Sontag, E. D. On the Input-to-State Stability Property. European Journal of Control 1, 24–36 (1995) – 10.1016/s0947-3580(95)70005-x
- Sontag, E. & Teel, A. Changing supply functions in input/state stable systems. IEEE Trans. Automat. Contr. 40, 1476–1478 (1995) – 10.1109/9.402246
- Sontag, E. D. & Wang, Y. On characterizations of the input-to-state stability property. Systems & Control Letters 24, 351–359 (1995) – 10.1016/0167-6911(94)00050-6