Expressiveness and Structure Preservation in Learning Port-Hamiltonian Systems
Authors
Juan-Pablo Ortega, Daiying Yin
Abstract
A well-specified parametrization for single-input/single-output (SISO) linear port-Hamiltonian systems amenable to structure-preserving supervised learning is provided. The construction is based on controllable and observable normal form Hamiltonian representations for those systems, which reveal fundamental relationships between classical notions in control theory and crucial properties in the machine learning context, like structure-preservation and expressive power. The results in the paper suggest parametrizations of the estimation problem associated with these systems that amount, at least in the canonical case, to unique identification and prove that the parameter complexity necessary for the replication of the dynamics is only \( \)\mathcal {O}(n)\( \) O ( n ) and not \( \)\mathcal {O}(n^2)\( \) O ( n 2 ) , as suggested by the standard parametrization of these systems.
Keywords
Linear port-Hamiltonian system; machine learning; structure-preserving algorithm; systems theory; physics-informed machine learning
Citation
- ISBN: 9783031382987
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-38299-4_33
- Note: International Conference on Geometric Science of Information
BibTeX
@inbook{Ortega_2023,
title={{Expressiveness and Structure Preservation in Learning Port-Hamiltonian Systems}},
ISBN={9783031382994},
ISSN={1611-3349},
DOI={10.1007/978-3-031-38299-4_33},
booktitle={{Geometric Science of Information}},
publisher={Springer Nature Switzerland},
author={Ortega, Juan-Pablo and Yin, Daiying},
year={2023},
pages={313--322}
}
References
- Gonzalez, O. Time Integration and Discrete Hamiltonian Systems. Mechanics: From Theory to Computation 257–275 (2000) doi:10.1007/978-1-4612-1246-1_10 – 10.1007/978-1-4612-1246-1_10
- Grigoryeva, L. & Ortega, J.-P. Dimension reduction in recurrent networks by canonicalization. JGM 13, 647 (2021) – 10.3934/jgm.2021028
- Kalman, R. E. Mathematical Description of Linear Dynamical Systems. Journal of the Society for Industrial and Applied Mathematics Series A Control 1, 152–192 (1963) – 10.1137/0301010
- Karniadakis, G. E. et al. Physics-informed machine learning. Nat Rev Phys 3, 422–440 (2021) – 10.1038/s42254-021-00314-5
- Leimkuhler, B. & Reich, S. Simulating Hamiltonian Dynamics. (2005) doi:10.1017/cbo9780511614118 – 10.1017/cbo9780511614118
- Marsden, J. E. & West, M. Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001) – 10.1017/s096249290100006x
- McLachlan, R. I. & Quispel, G. R. W. Geometric integrators for ODEs. J. Phys. A: Math. Gen. 39, 5251–5285 (2006) – 10.1088/0305-4470/39/19/s01
- Medianu, S., Lefevre, L. & Stefanoiu, D. Identifiability of linear lossless Port-controlled Hamiltonian systems. 2nd International Conference on Systems and Computer Science 56–61 (2013) doi:10.1109/icconscs.2013.6632023 – 10.1109/icconscs.2013.6632023
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Menoncin, F. An Approximate Solution for Optimal Portfolio in Incomplete Markets. Mathematical Control Theory and Finance 293–310 (2008) doi:10.1007/978-3-540-69532-5_16 – 10.1007/978-3-540-69532-5_16
- Williamson, J. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems. American Journal of Mathematics 58, 141 (1936) – 10.2307/2371062
- Wu, J.-L., Xiao, H. & Paterson, E. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Phys. Rev. Fluids 3, (2018) – 10.1103/physrevfluids.3.074602