Identifiability of linear lossless Port-controlled Hamiltonian systems
Authors
Silviu Medianu, Laurent Lefevre, Dan Stefanoiu
Abstract
The aim of this paper, is to study the identifiability property, of Port-Controlled Hamiltonian systems. A simple identifiability condition, is derived by transforming the port-Hamiltonian systems to the observable canonical form. Indeed, the observable canonical form, gives the possibility to represent the transfer function in a simplified form, similar to ARMAX models, used in identification. In order to test the identifiability of Port-Controlled Hamiltonian systems, a test was realized in the case of a LC circuit.
Citation
- Journal: 2nd International Conference on Systems and Computer Science
- Year: 2013
- Volume:
- Issue:
- Pages: 56–61
- Publisher: IEEE
- DOI: 10.1109/icconscs.2013.6632023
BibTeX
@inproceedings{Medianu_2013,
title={{Identifiability of linear lossless Port-controlled Hamiltonian systems}},
DOI={10.1109/icconscs.2013.6632023},
booktitle={{2nd International Conference on Systems and Computer Science}},
publisher={IEEE},
author={Medianu, Silviu and Lefevre, Laurent and Stefanoiu, Dan},
year={2013},
pages={56--61}
}
References
- Verhaegen, M. Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30, 61–74 (1994) – 10.1016/0005-1098(94)90229-1
- VERHAEGEN, M. & DEWILDE, P. Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm. International Journal of Control 56, 1211–1241 (1992) – 10.1080/00207179208934364
- Van Overschee, P. & De Moor, B. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30, 75–93 (1994) – 10.1016/0005-1098(94)90230-5
- Van Overschee, P. & De Moor, B. Subspace Identification for Linear Systems. (Springer US, 1996). doi:10.1007/978-1-4613-0465-4 – 10.1007/978-1-4613-0465-4
- kailath, Linear Systems (1980)
- van der-shaft, Theory of Port-Hamiltonian Systems (2005)
- van den-schaft, Port-hamiltonian systems: From geometric network modeling to control. Hycon-EECI Course Chapter 2 Control of Port-Hamiltonian Systems (2009)
- ruscio, System theory state-space analysis and control theory. Lectures Notes in Control Theory (2009)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- stefanoiu, Fundamentele Modelarii Si Identificarii Sistemelor (2004)
- ljung, System Identification Theory for the User (1999)
- maschke, Port-controlled Hamiltonian systems: Modeling origins and system theoretic properties. Proceedings of the 2nd IFAC International Symposium on Nonlinear Control Systems Design NOLCOSBordeaux (1992)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Maschke, B. M. & van der Schaft, A. J. Interconnection of systems: the network paradigm. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 207–212 – 10.1109/cdc.1996.574297
- maschke, Interconnected mechanical systems Part i and II. Modelling and Control of Mechanical Systems (1997)
- van der-schaft, The hamiltonian formulation of energy conserving physical systems with external ports. Archiv fur Electronik und “Ubertragungstechnik (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7