Authors

Satoru Sakai, Koichi Osuka, Kenji Fujimoto

Abstract

This paper gives an exact and explicit expression of the structured singular value for robotic manipulators with a passivity based control in port-controlled Hamiltonian form, even though it is not possible to give the exact or explicit structured singular value for general systems. First, we focus on dynamics with endlink mass perturbation after the settling time. Second, we derive the exact and explicit structured singular value for manipulators by using structural properties of the dynamics. The derived structured singular value is nothing but the structured singular value of manipulators without control because the passivity based control preserves the Hamiltonian structure. Furthermore, based on the derived structured singular value, we quantitatively analyze the robust stability of robotic manipulators with the passivity based control

Citation

  • Journal: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
  • Year: 2006
  • Volume:
  • Issue:
  • Pages: 2053–2058
  • Publisher: IEEE
  • DOI: 10.1109/iros.2006.282418

BibTeX

@inproceedings{Sakai_2006,
  title={{Exact structured singular value of robotic manipulators and quantitative analysis of passivity based control}},
  DOI={10.1109/iros.2006.282418},
  booktitle={{2006 IEEE/RSJ International Conference on Intelligent Robots and Systems}},
  publisher={IEEE},
  author={Sakai, Satoru and Osuka, Koichi and Fujimoto, Kenji},
  year={2006},
  pages={2053--2058}
}

Download the bib file

References

  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • zhou, Robust and Optimal Control (1996)
  • Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
  • van der Schaft, A. J. Stabilization of Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 10, 1021–1035 (1986) – 10.1016/0362-546x(86)90086-6
  • Arimoto, S., Sekimoto, M., Hashiguchi, H. & Ozawa, R. Natural resolution of ill-posedness of inverse kinematics for redundant robots: a challenge to Bernstein’s degrees-of-freedom problem. Advanced Robotics 19, 401–434 (2005) – 10.1163/1568553053662555
  • satoru sakai, Dynamic Output Feedback Stabilization for a class of Nonholonomic Hamiltonian Systems. SICE 2004 Annual Conference (2004)
  • Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
  • hashiguchi, A challenge to bernstein degrees-of-freedom problem in both cases of human and robotic multijoint movements. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences (2005)
  • Hui Cheng, Yiu-Kuen Yiu & Zexiang Li. Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Trans. Mechatron. 8, 483–491 (2003) – 10.1109/tmech.2003.820006
  • Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
  • Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003)10.1016/j.automatica.2003.07.005
  • Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
  • Maschke, B. M. & van der Schaft, A. J. A Hamiltonian approach to stabilization of nonholonomic mechanical systems. Proceedings of 1994 33rd IEEE Conference on Decision and Control vol. 3 2950–2954 – 10.1109/cdc.1994.411344
  • maschke, Port-controlled Hamiltonian systems: Modeling origins and system-theoretic properties. IFAC Symp Nonlinear Control Systems (1992)
  • Khennouf, H., Canudas de Wit, C. & van der Schaft, A. J. Preliminary results on asymptotic stabilization of Hamiltonian systems with nonholonomic constraints. Proceedings of 1995 34th IEEE Conference on Decision and Control vol. 4 4305–4310 – 10.1109/cdc.1995.478917
  • kawanishi, Analysis/synthesis based on exact expression of physical parameter variations. Proc 2nd Eur Contr Conf (1995)
  • Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
  • (0)