Estimating and enlarging the domain of attraction in IDA-PBC
Authors
Abstract
Interconnection and damping assignment passivity- based control (IDA-PBC) is a nonlinear state feedback technique that endows the closed-loop system with a port-Hamiltonian (PH) structure. The assigned energy function qualifies as a Lyapunov function and thus can be used to estimate the domain of attraction (DA). However, determining the largest bounded sublevel set of a general energy function which is contained in the DA is a difficult task. In this paper, a numerical algorithm is developed to cope with this problem without formulating conditions on the energy function. Moreover, an optimization procedure is proposed to determine a controller parametrization which maximizes the estimated DA, while simultaneously taking account of desired closed-loop performance. An illustrative example is included, where also a comparison to a linear state feedback controller is presented.
Citation
- Journal: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC)
- Year: 2012
- Volume:
- Issue:
- Pages: 1852–1858
- Publisher: IEEE
- DOI: 10.1109/cdc.2012.6426473
BibTeX
@inproceedings{Kloiber_2012,
title={{Estimating and enlarging the domain of attraction in IDA-PBC}},
DOI={10.1109/cdc.2012.6426473},
booktitle={{2012 IEEE 51st IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Kloiber, Tobias and Kotyczka, Paul},
year={2012},
pages={1852--1858}
}
References
- Allgower, E. L. & Georg, K. Introduction to Numerical Continuation Methods. (2003) doi:10.1137/1.9780898719154 – 10.1137/1.9780898719154
- lee, Introduction to Smooth Manifolds (2006)
- Chiang, H.-D. & Thorp, J. S. Stability regions of nonlinear dynamical systems: a constructive methodology. IEEE Trans. Automat. Contr. 34, 1229–1241 (1989) – 10.1109/9.40768
- press, Numerical Recipes in C The Art of Scientific Computing (2002)
- Hsiao-Dong Chiang & Fekih-Ahmed, L. Quasi-stability regions of nonlinear dynamical systems: optimal estimations. IEEE Trans. Circuits Syst. I 43, 636–643 (1996) – 10.1109/81.526679
- Baíllo, A. & Cuevas, A. On the estimation of a star-shaped set. Advances in Applied Probability 33, 717–726 (2001) – 10.1239/aap/1011994024
- Hsiao-Dong Chang, Chia-Chi Chu & Cauley, G. Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective. Proc. IEEE 83, 1497–1529 (1995) – 10.1109/5.481632
- Genesio, R., Tartaglia, M. & Vicino, A. On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. Automat. Contr. 30, 747–755 (1985) – 10.1109/tac.1985.1104057
- Chiang, H.-D., Hirsch, M. W. & Wu, F. F. Stability regions of nonlinear autonomous dynamical systems. IEEE Trans. Automat. Contr. 33, 16–27 (1988) – 10.1109/9.357
- Kloiber, T. & Kotyczka, P. Passivity-based design of switching controllers for nonlinear systems. 2012 American Control Conference (ACC) 2431–2436 (2012) doi:10.1109/acc.2012.6315455 – 10.1109/acc.2012.6315455
- kotyczka, Transparent Dynamics Assignment for Nonlinear State Feedback Control (2010)
- Galaz, M., Ortega, R., Bazanella, A. S. & Stankovic, A. M. An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39, 111–119 (2003) – 10.1016/s0005-1098(02)00177-2
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Cheng, D., Astolfi, A. & Ortega, R. On feedback equivalence to port controlled Hamiltonian systems. Systems & Control Letters 54, 911–917 (2005) – 10.1016/j.sysconle.2005.02.005
- khalil, Nonlinear Systems (1996)