Effective numerical simulation of fault transient system
Authors
Sixu Wu, Feng Ji, Lu Gao, Ruili Zhang, Cunwei Tang, Yifa Tang
Abstract
Power systems, including synchronous generator systems, are typical systems that strive for stable operation. In this paper, we numerically study the fault transient process of a synchronous generator system based on the first benchmark model. That is, we make it clear whether an originally stable generator system can restore its stability after a short time of unstable transient process. To achieve this, we construct a structure-preserving method and compare it with the existing and frequently-used predictor–corrector method. We newly establish a reductive form of the circuit system and accelerate the reduction process. Also a switching method between two stages in the fault transient process is given. Numerical results show the effectiveness and reliability of our method.
Citation
- Journal: International Journal of Modeling, Simulation, and Scientific Computing
- Year: 2025
- Volume: 16
- Issue: 02
- Pages:
- Publisher: World Scientific Pub Co Pte Ltd
- DOI: 10.1142/s1793962325500291
BibTeX
@article{Wu_2025,
title={{Effective numerical simulation of fault transient system}},
volume={16},
ISSN={1793-9615},
DOI={10.1142/s1793962325500291},
number={02},
journal={International Journal of Modeling, Simulation, and Scientific Computing},
publisher={World Scientific Pub Co Pte Ltd},
author={Wu, Sixu and Ji, Feng and Gao, Lu and Zhang, Ruili and Tang, Cunwei and Tang, Yifa},
year={2025}
}
References
- Kundur P., Power System Stability and Control (1994)
- Xu Z., Electr. Power Autom. Equip. (2020)
- Zhang, J., Zhu, A., Ji, F., Lin, C. & Tang, Y. Effective numerical simulations of synchronous generator system. SIMULATION vol. 100 595–611 (2024) – 10.1177/00375497241231986
- Feng K., Proc. 1984 Beijing Symp. Differential Geometry and Differential Equations (1985)
- Ji F., Proc. CSEE (2022)
- Horn R. A., Matrix Analysis (2013)
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Dong Y., Proc. CSEE (2018)
- Zhang, Y., Gole, A. M., Wu, W., Zhang, B. & Sun, H. Development and Analysis of Applicability of a Hybrid Transient Simulation Platform Combining TSA and EMT Elements. IEEE Transactions on Power Systems vol. 28 357–366 (2013) – 10.1109/tpwrs.2012.2196450
- Watson N., Power Systems Electromagnetic Transients Simulation (2019)
- Dommel, H. Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks. IEEE Transactions on Power Apparatus and Systems vol. PAS-88 388–399 (1969) – 10.1109/tpas.1969.292459
- Dommel H. W., EMTP Theory Book (1992)
- Ji, F., Qiu, Y., Wei, X., Wu, X. & He, Z. Nodal dynamic equation used for electromagnetic transient simulation of linear switching circuit. IET Science, Measurement & Technology vol. 12 626–633 (2018) – 10.1049/iet-smt.2017.0434
- Hairer, E., Wanner, G. & Lubich, C. Symplectic Integration of Hamiltonian Systems. Springer Series in Computational Mathematics 179–236 doi:10.1007/3-540-30666-8_6 – 10.1007/3-540-30666-8_6
- Sanz-Serna, J. M. Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica vol. 1 243–286 (1992) – 10.1017/s0962492900002282
- Tang, Y.-F., Pérez-García, V. M. & Vázquez, L. Symplectic methods for the Ablowitz-Ladik model. Applied Mathematics and Computation vol. 82 17–38 (1997) – 10.1016/s0096-3003(96)00019-7
- He, Y., Zhou, Z., Sun, Y., Liu, J. & Qin, H. Explicit K -symplectic algorithms for charged particle dynamics. Physics Letters A vol. 381 568–573 (2017) – 10.1016/j.physleta.2016.12.031
- Tao, M. Explicit high-order symplectic integrators for charged particles in general electromagnetic fields. Journal of Computational Physics vol. 327 245–251 (2016) – 10.1016/j.jcp.2016.09.047
- Zhang, R. et al. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field. Physics of Plasmas vol. 25 (2018) – 10.1063/1.5012767
- Zhou, Z., He, Y., Sun, Y., Liu, J. & Qin, H. Explicit symplectic methods for solving charged particle trajectories. Physics of Plasmas vol. 24 (2017) – 10.1063/1.4982743
- Zhu, B., Hu, Z., Tang, Y. & Zhang, R. Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields. International Journal of Modeling, Simulation, and Scientific Computing vol. 07 1650008 (2016) – 10.1142/s1793962316500082
- Zhang, R. et al. Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields. Physics of Plasmas vol. 21 (2014) – 10.1063/1.4867669
- Zhu, B., Tang, Y., Zhang, R. & Zhang, Y. Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation. Numerical Algorithms vol. 81 1485–1503 (2019) – 10.1007/s11075-019-00708-8
- Zhang R., Proc. 2011 Grand Challenges on Modeling and Simulation Conf. (2011)
- Zhu, B., Ji, L., Zhu, A. & Tang, Y. Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems. Chinese Physics B vol. 32 020204 (2023) – 10.1088/1674-1056/aca9c8
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- First benchmark model for computer simulation of subsynchronous resonance. IEEE Transactions on Power Apparatus and Systems vol. 96 1565–1572 (1977) – 10.1109/t-pas.1977.32485
- Cheng S., Theory and Method of Subsynchronous Oscillation in Power System (2009)
- Hairer, E., Roche, M. & Lubich, C. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 1989). doi:10.1007/bfb0093947 – 10.1007/bfb0093947
- Hairer, E. & Wanner, G. Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 1996). doi:10.1007/978-3-642-05221-7 – 10.1007/978-3-642-05221-7
- Ehle, B. L. High order a-stable methods for the numerical solution of systems of D.E.’s. BIT vol. 8 276–278 (1968) – 10.1007/bf01933437
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017