Authors

Jiawei Zhang, Aiqing Zhu, Feng Ji, Chang Lin, Yifa Tang

Abstract

Synchronous generator system is a complicated dynamic system for energy transmission, which plays an important role in modern industrial production. In this article, we propose some predictor-corrector methods and structure-preserving methods for a generator system based on the first benchmark model of subsynchronous resonance, among which the structure-preserving methods preserve a Dirac structure associated with the so-called port-Hamiltonian descriptor systems. To illustrate this, the simplified generator system in the form of index-1 differential-algebraic equations has been derived. Our analyses provide the global error estimates for a special class of structure-preserving methods called Gauss methods, which guarantee their superior performance over the PSCAD/EMTDC and the predictor-corrector methods in terms of computational stability. Numerical simulations are implemented to verify the effectiveness and advantages of our methods.

Citation

  • Journal: SIMULATION
  • Year: 2024
  • Volume: 100
  • Issue: 6
  • Pages: 595–611
  • Publisher: SAGE Publications
  • DOI: 10.1177/00375497241231986

BibTeX

@article{Zhang_2024,
  title={{Effective numerical simulations of synchronous generator system}},
  volume={100},
  ISSN={1741-3133},
  DOI={10.1177/00375497241231986},
  number={6},
  journal={SIMULATION},
  publisher={SAGE Publications},
  author={Zhang, Jiawei and Zhu, Aiqing and Ji, Feng and Lin, Chang and Tang, Yifa},
  year={2024},
  pages={595--611}
}

Download the bib file

References

  • Kundur P, Power system stability and control (1994)
  • Xu Z, Electr Power Autom Equip (2020)
  • Dong Y, Proc CSEE (2018)
  • Zhang, Y., Gole, A. M., Wu, W., Zhang, B. & Sun, H. Development and Analysis of Applicability of a Hybrid Transient Simulation Platform Combining TSA and EMT Elements. IEEE Transactions on Power Systems vol. 28 357–366 (2013) – 10.1109/tpwrs.2012.2196450
  • Watson N, Power systems electromagnetic transients simulation (2019)
  • Dommel, H. Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks. IEEE Transactions on Power Apparatus and Systems vol. PAS-88 388–399 (1969) – 10.1109/tpas.1969.292459
  • Dommel HW, EMTP theory book (1992)
  • Ji, F., Qiu, Y., Wei, X., Wu, X. & He, Z. Nodal dynamic equation used for electromagnetic transient simulation of linear switching circuit. IET Science, Measurement & Technology vol. 12 626–633 (2018) – 10.1049/iet-smt.2017.0434
  • Ji F, Proc CSEE (2022)
  • Feng K, Proceedings of 1984 Beijing symposium on differential geometry and differential equations (1985)
  • Hairer, E., Wanner, G. & Lubich, C. Symplectic Integration of Hamiltonian Systems. Springer Series in Computational Mathematics 179–236 doi:10.1007/3-540-30666-8_6 – 10.1007/3-540-30666-8_6
  • Sanz-Serna, J. M. Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica vol. 1 243–286 (1992) – 10.1017/s0962492900002282
  • Tang Y, Appl Math Comput (1997)
  • He, Y., Zhou, Z., Sun, Y., Liu, J. & Qin, H. Explicit K -symplectic algorithms for charged particle dynamics. Physics Letters A vol. 381 568–573 (2017) – 10.1016/j.physleta.2016.12.031
  • Tao, M. Explicit high-order symplectic integrators for charged particles in general electromagnetic fields. Journal of Computational Physics vol. 327 245–251 (2016) – 10.1016/j.jcp.2016.09.047
  • Zhang, R. et al. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field. Physics of Plasmas vol. 25 (2018) – 10.1063/1.5012767
  • Zhou, Z., He, Y., Sun, Y., Liu, J. & Qin, H. Explicit symplectic methods for solving charged particle trajectories. Physics of Plasmas vol. 24 (2017) – 10.1063/1.4982743
  • Zhu, B., Hu, Z., Tang, Y. & Zhang, R. Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields. International Journal of Modeling, Simulation, and Scientific Computing vol. 07 1650008 (2016) – 10.1142/s1793962316500082
  • Zhang, R. et al. Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields. Physics of Plasmas vol. 21 (2014) – 10.1063/1.4867669
  • Zhu, B., Tang, Y., Zhang, R. & Zhang, Y. Symplectic simulation of dark solitons motion for nonlinear Schrödinger equation. Numerical Algorithms vol. 81 1485–1503 (2019) – 10.1007/s11075-019-00708-8
  • Zhang R, Proceedings of the 2011 grand challenges on modeling and simulation conference (2011)
  • Zhu, B., Ji, L., Zhu, A. & Tang, Y. Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems. Chinese Physics B vol. 32 020204 (2023) – 10.1088/1674-1056/aca9c8
  • Mehrmann V, 2019 IEEE 58th conference on decision and control (CDC)
  • van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014)10.1561/2600000002
  • First benchmark model for computer simulation of subsynchronous resonance. IEEE Transactions on Power Apparatus and Systems vol. 96 1565–1572 (1977) – 10.1109/t-pas.1977.32485
  • Cheng S, Theory and method of subsynchronous oscillation in power system (2009)
  • Hairer, E., Roche, M. & Lubich, C. The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics (Springer Berlin Heidelberg, 1989). doi:10.1007/bfb0093947 – 10.1007/bfb0093947
  • Hairer, E. & Wanner, G. Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 1996). doi:10.1007/978-3-642-05221-7 – 10.1007/978-3-642-05221-7
  • Ehle, B. L. High order a-stable methods for the numerical solution of systems of D.E.’s. BIT vol. 8 276–278 (1968) – 10.1007/bf01933437
  • Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017