Discrete IDA-PBC control law for Newtonian mechanical port-Hamiltonian systems
Authors
Said Aoues, Damien Eberard, Wilfrid Marquis-Favre
Abstract
This paper deals with the stability of discrete closed-loop dynamics arising from digital IDA-PBC controller design. This work concerns the class of Newtonian mechanical port-Hamiltonian systems (PHSs), that is those having separable energy being quadrating in momentum (with constant mass matrix). We first introduce a discretization scheme which ensures a passivity equation relatively to the same storage and dissipation functions as the continuous-time PHS. A discrete controller is then obtained following the IDA-PBC design procedure applied to the discrete PHS system. This method guarantees that, from an energetic viewpoint, the discrete closed-loop behavior is similar to the continuous one. Under zero-state observability assumption, closed-loop stability then follows from LaSalle principle. The method is illustrated on an inertia wheel pendulum model.
Citation
- Journal: 2015 54th IEEE Conference on Decision and Control (CDC)
- Year: 2015
- Volume:
- Issue:
- Pages: 4388–4393
- Publisher: IEEE
- DOI: 10.1109/cdc.2015.7402904
BibTeX
@inproceedings{Aoues_2015,
title={{Discrete IDA-PBC control law for Newtonian mechanical port-Hamiltonian systems}},
DOI={10.1109/cdc.2015.7402904},
booktitle={{2015 54th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Aoues, Said and Eberard, Damien and Marquis-Favre, Wilfrid},
year={2015},
pages={4388--4393}
}
References
- Hairer, E., McLachlan, R. I. & Skeel, R. D. On energy conservation of the simplified Takahashi-Imada method. ESAIM: M2AN 43, 631–644 (2009) – 10.1051/m2an/2009019
- laila, Discrete-time IDA-PBC design for separable Hamiltonian systems. 16th IFAC World Congress (2005)
- Laila, D. S. & Astolfi, A. Construction of discrete-time models for port-controlled Hamiltonian systems with applications. Systems & Control Letters 55, 673–680 (2006) – 10.1016/j.sysconle.2005.09.012
- Leimkuhler, B. & Reich, S. Simulating Hamiltonian Dynamics. (2005) doi:10.1017/cbo9780511614118 – 10.1017/cbo9780511614118
- maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Proc of the IFAC Symposium on NOLCOS (1992)
- Monaco, S., Normand-Cyrot, D. & Tiefensee, F. Sampled-Data Stabilization; A PBC Approach. IEEE Trans. Automat. Contr. 56, 907–912 (2011) – 10.1109/tac.2010.2101130
- Nešić, D., Teel, A. R. & Kokotović, P. V. Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations. Systems & Control Letters 38, 259–270 (1999) – 10.1016/s0167-6911(99)00073-0
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Stramigioli, S., Secchi, C., van der Schaft, A. J. & Fantuzzi, C. Sampled data systems passivity and discrete port-Hamiltonian systems. IEEE Trans. Robot. 21, 574–587 (2005) – 10.1109/tro.2004.842330
- feng, Symplectic geometric algorithms for Hamiltonian system Sci and Tech (2002)
- Byrnes, C. I. & Wei Lin. Losslessness, feedback equivalence, and the global stabilization of discrete-time nonlinear systems. IEEE Trans. Automat. Contr. 39, 83–98 (1994) – 10.1109/9.273341
- golo, Hamiltonian discretization of the the Telegrapher’s equation. Automatica (2004)
- ge, Lie-Poisson Hamiltonion-Jacobi theory and Lie-Poisson integrators. Physics Letters A (1988)
- Greenhalgh, S., Acary, V. & Brogliato, B. On preserving dissipativity properties of linear complementarity dynamical systems with the \(heta\) θ -method. Numer. Math. 125, 601–637 (2013) – 10.1007/s00211-013-0553-5
- gören-sümer, A direct discrete-time IDA-PBC design method for a class of underactuated Hamiltonian systems. 18th IFAC World Congress (2011)
- aoues, Discrete IDA-PBC design for 2D port-Hamiltonian systems. 9th IFAC Symposium on Nonlinear Control Systems Toulouse (0)
- aoues, Hamiltonian systems discrete-time approximation: losslessness, passivity and composability. Submitted to Systems and Control Letters (0)
- greenspan, Discrete numerical methods in physics and engineering. (1974)
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters 55, 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- van der schaft, L2-Gain and Passivity Techniques in Nonlinear Control (1999)
- Tiefensee, F., Monaco, S. & Normand-Cyrot, D. IDA-PBC under sampling for port-controlled hamiltonian systems. Proceedings of the 2010 American Control Conference 1811–1816 (2010) doi:10.1109/acc.2010.5531444 – 10.1109/acc.2010.5531444
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493