Authors

Walter Gil–-González, Oscar Danilo Montoya, Alejandro Garces

Abstract

This paper proposes a direct power control for electrical energy storage systems (EESS) in ac microgrids. This strategy allows managing instantaneous active and reactive power without using a conventional inner-loop current regulator and without a phase-locked loop, increasing the reliability of the system while reducing investment costs. PI passivity-based control (PI-PBC) is selected to control the direct power model of EESS. This is because their models exhibit a port-Hamiltonian formulation in open-loop, and PI-PBC exploits this formulation to design a PI controller, which guarantees global asymptotically stability in closed-loop in the sense of Lyapunov. Simulations tested the proposed model in a microgrid and compared with conventional vector oriented controls in a dq reference frame and a direct power model controlled via feedback linearization (FL). PI-PBC has a better performance than other two controllers in all considered scenarios. Simulation results have conducted through MATLAB/SIMULINK software by using the SimPowerSystem toolbox.

Keywords

Direct power model; Electrical energy storage system; PI passivity-based control; Port-Hamiltonian formulation; A low-voltage microgrid

Citation

  • Journal: Electric Power Systems Research
  • Year: 2019
  • Volume: 175
  • Issue:
  • Pages: 105885
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.epsr.2019.105885

BibTeX

@article{Gil_Gonz_lez_2019,
  title={{Direct power control of electrical energy storage systems: A passivity-based PI approach}},
  volume={175},
  ISSN={0378-7796},
  DOI={10.1016/j.epsr.2019.105885},
  journal={Electric Power Systems Research},
  publisher={Elsevier BV},
  author={Gil–-González, Walter and Montoya, Oscar Danilo and Garces, Alejandro},
  year={2019},
  pages={105885}
}

Download the bib file

References

  • Akinyele, Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. (2014)
  • Parra, D. et al. An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renewable and Sustainable Energy Reviews vol. 79 730–749 (2017) – 10.1016/j.rser.2017.05.003
  • Zakeri, B. & Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews vol. 42 569–596 (2015) – 10.1016/j.rser.2014.10.011
  • Montoya Giraldo, O. D., Gil González, W. J., Garcés Ruiz, A., Escobar Mejía, A. & Grisales Noreña, L. F. Nonlinear Control for Battery Energy Storage Systems in Power Grids. 2018 IEEE Green Technologies Conference (GreenTech) 65–70 (2018) doi:10.1109/greentech.2018.00021 – 10.1109/greentech.2018.00021
  • Gil-González, W. & Montoya, O. D. Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach. Ain Shams Engineering Journal vol. 10 369–378 (2019) – 10.1016/j.asej.2019.01.001
  • Planas, E., Andreu, J., Gárate, J. I., Martínez de Alegría, I. & Ibarra, E. AC and DC technology in microgrids: A review. Renewable and Sustainable Energy Reviews vol. 43 726–749 (2015) – 10.1016/j.rser.2014.11.067
  • Montoya, O. D., Gil-González, W. & Garces, A. Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches. International Journal of Electrical Power & Energy Systems vol. 112 221–231 (2019) – 10.1016/j.ijepes.2019.04.046
  • Aly, M. M., Abdel-Akher, M., Said, S. M. & Senjyu, T. A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support. International Journal of Electrical Power & Energy Systems vol. 83 485–494 (2016) – 10.1016/j.ijepes.2016.04.037
  • Gil-González, W. & Montoya, O. D. Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach. Journal of Energy Storage vol. 18 459–466 (2018) – 10.1016/j.est.2018.05.020
  • Rahim, A. H. M. A. & Nowicki, E. P. Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system. Energy Conversion and Management vol. 59 96–102 (2012) – 10.1016/j.enconman.2012.03.003
  • Ortega, A. & Milano, F. Generalized Model of VSC-Based Energy Storage Systems for Transient Stability Analysis. IEEE Transactions on Power Systems vol. 31 3369–3380 (2016) – 10.1109/tpwrs.2015.2496217
  • Jing Shi, Yuejin Tang, Li Ren, Jingdong Li & Shijie Cheng. Discretization-Based Decoupled State-Feedback Control for Current Source Power Conditioning System of SMES. IEEE Transactions on Power Delivery vol. 23 2097–2104 (2008) – 10.1109/tpwrd.2008.921117
  • Shi, J. et al. Improved Discretization-Based Decoupled Feedback Control for a Series-Connected Converter of SCC. IEEE Transactions on Applied Superconductivity vol. 26 1–6 (2016) – 10.1109/tasc.2016.2610718
  • Ali, Mohd. H., Park, M., Yu, I.-K., Murata, T. & Tamura, J. Improvement of Wind-Generator Stability by Fuzzy-Logic-Controlled SMES. IEEE Transactions on Industry Applications vol. 45 1045–1051 (2009) – 10.1109/tia.2009.2018901
  • Mohammedi, M. et al. Fuzzy Logic and Passivity-based Controller Applied to Electric Vehicle Using Fuel Cell and Supercapacitors Hybrid Source. Energy Procedia vol. 50 619–626 (2014) – 10.1016/j.egypro.2014.06.076
  • Shanchuan Wang & Jianxun Jin. Design and Analysis of a Fuzzy Logic Controlled SMES System. IEEE Transactions on Applied Superconductivity vol. 24 1–5 (2014) – 10.1109/tasc.2014.2348562
  • Nguyen, Applying model predictive control to SMES system in microgrids for eddy current losses reduction. IEEE Trans. Appl. Supercond. (2016)
  • Jing Shi et al. SMES Based Dynamic Voltage Restorer for Voltage Fluctuations Compensation. IEEE Transactions on Applied Superconductivity vol. 20 1360–1364 (2010) – 10.1109/tasc.2010.2041499
  • Gil González, W. J., Garcés, A. & Escobar, A. A Generalized Model and Control forSupermagnetic and Supercapacitor EnergyStorage. Ingeniería y Ciencia vol. 13 147–171 (2017) – 10.17230/ingciencia.13.26.6
  • Montoya, Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory. IEEE Trans. Circuits Syst. II (2019)
  • Montoya, O. D., Gil-Gonzalez, W. & Serra, F. M. PBC Approach for SMES Devices in Electric Distribution Networks. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 65 2003–2007 (2018)10.1109/tcsii.2018.2805774
  • Lin, X. & Lei, Y. Coordinated Control Strategies for SMES-Battery Hybrid Energy Storage Systems. IEEE Access vol. 5 23452–23465 (2017) – 10.1109/access.2017.2761889
  • Hou, R., Song, H., Nguyen, T.-T., Qu, Y. & Kim, H.-M. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy. Energies vol. 10 671 (2017) – 10.3390/en10050671
  • Leon, A. E., Mauricio, J. M., Solsona, J. A. & Gomez-Exposito, A. Adaptive Control Strategy for VSC-Based Systems Under Unbalanced Network Conditions. IEEE Transactions on Smart Grid vol. 1 311–319 (2010) – 10.1109/tsg.2010.2076840
  • Dong, D., Wen, B., Boroyevich, D., Mattavelli, P. & Xue, Y. Analysis of Phase-Locked Loop Low-Frequency Stability in Three-Phase Grid-Connected Power Converters Considering Impedance Interactions. IEEE Transactions on Industrial Electronics vol. 62 310–321 (2015) – 10.1109/tie.2014.2334665
  • Gil-González, W., Montoya, O. D. & Garces, A. Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach. International Journal of Electrical Power & Energy Systems vol. 110 588–597 (2019)10.1016/j.ijepes.2019.03.042
  • Cisneros, R. et al. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Engineering Practice vol. 43 109–119 (2015) – 10.1016/j.conengprac.2015.07.002
  • Montoya, (2016)
  • Perko, (2013)
  • Montoya, O. D., Garcés, A. & Serra, F. M. DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators. Journal of Energy Storage vol. 16 250–258 (2018) – 10.1016/j.est.2018.01.014
  • Xu, Y. et al. Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions. Energy vol. 143 372–384 (2018) – 10.1016/j.energy.2017.10.087
  • Golestan, S., Guerrero, J. M. & Vasquez, J. C. Three-Phase PLLs: A Review of Recent Advances. IEEE Transactions on Power Electronics vol. 32 1894–1907 (2017) – 10.1109/tpel.2016.2565642
  • Freijedo, F. D., Doval-Gandoy, J., Lopez, O. & Acha, E. Tuning of Phase-Locked Loops for Power Converters Under Distorted Utility Conditions. IEEE Transactions on Industry Applications vol. 45 2039–2047 (2009) – 10.1109/tia.2009.2031790