Dirac structures in nonequilibrium thermodynamics
Authors
Hiroaki Yoshimura, François Gay-Balmaz
Abstract
In this paper, it is shown that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. The Dirac structures are constructed on the Pontryagin bundle P = TQ ⊕ T ⁎ Q, where Q = Q × ℝ is the thermodynamic configuration manifold. In particular, it is illustrated how one can develop Dirac structures that include nonlinear nonholonomic constraints originated from the entropy production in each irreversible process. Lastly, we also present the induced Dirac structure on N = T⁎Q × ℝ together with the associated Lagrange-Dirac and Hamilton-Dirac dynamical formulations in analogy with nonholonomic mechanics.
Keywords
Nonequilibrium thermodynamics; Dirac structures; nonlinear nonholonomic constraints; irreversible processes; Lagrange-Dirac systems; Hamilton-Dirac systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 31–37
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.009
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Yoshimura_2018,
title={{Dirac structures in nonequilibrium thermodynamics}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.009},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Yoshimura, Hiroaki and Gay-Balmaz, François},
year={2018},
pages={31--37}
}
References
- Bloch, Representations of Dirac structures on vector spaces and nonlinear L–C circuits. (1997)
- Carathéodory, Untersuchungen über die Grund-lagen der Thermodynamik, Math. Ann. (1909)
- Courant, Beyond Pois-son structures. (1988)
- Dirac, P. A. M. Generalized Hamiltonian Dynamics. Canadian Journal of Mathematics vol. 2 129–148 (1950) – 10.4153/cjm-1950-012-1
- Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations. (1993)
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of Geometry and Physics vol. 111 169–193 (2017) – 10.1016/j.geomphys.2016.08.018
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems. Journal of Geometry and Physics vol. 111 194–212 (2017) – 10.1016/j.geomphys.2016.08.019
- Gay-Balmaz, F. & Yoshimura, H. Dirac structures in nonequilibrium thermodynamics. Journal of Mathematical Physics vol. 59 (2018) – 10.1063/1.5017223
- Gibbs, Graphical methods in the thermodynamics of fluids. Trans. Connecticus Acad (1873)
- Gibbs, A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Trans. Connecticus Acad (1873)
- Stueckelberg, (1974)
- Tulczyjew, The Legendre transformation. Ann. Inst. H. Poincaré. Sect. A (1977)
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und ÜBertragungstechnik (1995)
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics vol. 57 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics vol. 57 209–250 (2006) – 10.1016/j.geomphys.2006.02.012