Coordinated‐control strategy of scalable superconducting magnetic energy storage under an unbalanced voltage condition
Authors
Xiaodong Lin, Yong Lei, Weizhen Fu, Yingwei Zhu, Qun Zhou
Abstract
Modular multilevel converters (MMCs) have the advantages of high‐power density and small‐harmonic distortion because of their modularity and flexibility, thus providing a new avenue for research into scalable superconducting magnetic energy storage (SMES) in renewable energy generation. This study presents coordinated control for a three‐phase four‐wire (3P4W) MMC‐based SMES system under unbalanced voltage applications. First, the positive‐ and negative‐sequence mathematical models and the port‐controlled Hamiltonian with dissipation model of the 3P4W MMC‐SMES system are established by introducing an additional path for zero‐sequence current. Second, a multi‐objective passivity‐based control strategy that can effectively improve the power quality and system robustness and eliminate both double‐frequency active and reactive power fluctuations or double‐frequency active power fluctuation and negative‐sequence current is proposed. The simulation results based on MATLAB/Simulink demonstrate the effectiveness of the proposed topology of the SMES and its control strategy.
Citation
- Journal: IET Renewable Power Generation
- Year: 2020
- Volume: 14
- Issue: 5
- Pages: 734–746
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/iet-rpg.2019.0111
BibTeX
@article{Lin_2019,
title={{Coordinated‐control strategy of scalable superconducting magnetic energy storage under an unbalanced voltage condition}},
volume={14},
ISSN={1752-1424},
DOI={10.1049/iet-rpg.2019.0111},
number={5},
journal={IET Renewable Power Generation},
publisher={Institution of Engineering and Technology (IET)},
author={Lin, Xiaodong and Lei, Yong and Fu, Weizhen and Zhu, Yingwei and Zhou, Qun},
year={2019},
pages={734--746}
}
References
- Mukherjee P., Superconducting magnetic energy storage for stabilizing grid integrated with wind power generation systems. J. Mod. Power Syst. Clean Energy (2018)
- Chen, L. et al. SMES-Battery Energy Storage System for the Stabilization of a Photovoltaic-Based Microgrid. IEEE Trans. Appl. Supercond. 28, 1–7 (2018) – 10.1109/tasc.2018.2799544
- Molina, M. G., Enrique Mercado, P. & Hirokazu Watanabe, E. Improved Superconducting Magnetic Energy Storage (SMES) Controller for High-Power Utility Applications. IEEE Trans. Energy Convers. 26, 444–456 (2011) – 10.1109/tec.2010.2093601
- Liu, J., Zhang, H. & Zhang, Y. Coordinated Control Strategy of Scalable Superconducting Magnetic Energy Storage. IEEE Trans. Smart Grid 9, 1778–1786 (2018) – 10.1109/tsg.2016.2599699
- Madishetti S., Three‐level NPC‐inverter‐based SVM‐VCIMD with feedforward active PFC rectifier for enhanced AC mains power quality. IEEE Trans. Ind. Appl. (2016)
- Lin, X., Lei, Y. & Zhu, Y. A novel superconducting magnetic energy storage system design based on a three-level T-type converter and its energy-shaping control strategy. Electric Power Systems Research 162, 64–73 (2018) – 10.1016/j.epsr.2018.05.006
- Yu, Y., Konstantinou, G., Hredzak, B. & Agelidis, V. G. Power Balance of Cascaded H-Bridge Multilevel Converters for Large-Scale Photovoltaic Integration. IEEE Trans. Power Electron. 31, 292–303 (2016) – 10.1109/tpel.2015.2406315
- Dekka A., Model predictive control of high‐power modular multilevel converters – an overview. IEEE J. Emerg. Sel. Top. Power Electron. (2018)
- Busada, C. A., Gomez Jorge, S., Leon, A. E. & Solsona, J. A. Current Controller Based on Reduced Order Generalized Integrators for Distributed Generation Systems. IEEE Trans. Ind. Electron. 59, 2898–2909 (2012) – 10.1109/tie.2011.2167892
- Cheng, P. & Nian, H. Collaborative Control of DFIG System During Network Unbalance Using Reduced-Order Generalized Integrators. IEEE Trans. Energy Convers. 30, 453–464 (2015) – 10.1109/tec.2014.2363671
- Xu, L., Andersen, B. R. & Cartwright, P. VSC Transmission Operating Under Unbalanced AC Conditions—Analysis and Control Design. IEEE Trans. Power Delivery 20, 427–434 (2005) – 10.1109/tpwrd.2004.835032
- Li, X., Zhang, C., Chen, A., Xing, X. & Zhang, G. Model predictive direct current control strategy for three-level T-type rectifier under unbalanced grid voltage conditions. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) 1514–1519 (2018) doi:10.1109/apec.2018.8341217 – 10.1109/apec.2018.8341217
- Wang, F., Duarte, J. L. & Hendrix, M. A. M. Design and analysis of active power control strategies for distributed generation inverters under unbalanced grid faults. IET Gener. Transm. Distrib. 4, 905–916 (2010) – 10.1049/iet-gtd.2009.0607
- Mohamed, Y. A.-R. I. & F. El-Saadany, E. A Robust Natural-Frame-Based Interfacing Scheme for Grid-Connected Distributed Generation Inverters. IEEE Trans. Energy Convers. 26, 728–736 (2011) – 10.1109/tec.2011.2141135
- Mortazavian, S., Shabestary, M. M. & Mohamed, Y. A.-R. I. Analysis and Dynamic Performance Improvement of Grid-Connected Voltage–Source Converters Under Unbalanced Network Conditions. IEEE Trans. Power Electron. 32, 8134–8149 (2017) – 10.1109/tpel.2016.2633994
- Adib, A., Lamb, J. & Mirafzal, B. Ancillary Services via VSIs in Microgrids With Maximum DC-Bus Voltage Utilization. IEEE Trans. on Ind. Applicat. 55, 648–658 (2019) – 10.1109/tia.2018.2865483
- Nejabatkhah F., Control strategies of three‐phase distributed generation inverters for grid unbalanced voltage compensation. IEEE Trans. Power Electron. (2016)
- ZHENG, T., CHEN, L., GUO, Y. & MEI, S. Flexible unbalanced control with peak current limitation for virtual synchronous generator under voltage sags. J. Mod. Power Syst. Clean Energy 6, 61–72 (2017) – 10.1007/s40565-017-0295-y
- Lei, Y., Lin, X. & Zhu, Y. Passivity-Based Control Strategy for SMES Under an Unbalanced Voltage Condition. IEEE Access 6, 28768–28776 (2018) – 10.1109/access.2018.2831251
- Kabiri, R., Holmes, D. G. & McGrath, B. P. Control of Active and Reactive Power Ripple to Mitigate Unbalanced Grid Voltages. IEEE Trans. on Ind. Applicat. 52, 1660–1668 (2016) – 10.1109/tia.2015.2508425
- Zheng, T., Chen, L., Guo, Y. & Mei, S. Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions. IET Generation Trans & Dist 12, 1621–1630 (2018) – 10.1049/iet-gtd.2017.0523
- Weiqing Tao, Zhixia Gu, Leqin Wang & Jiaxi Li. Research on control strategy of grid-connected inverter under unbalanced voltage conditions. 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) 915–919 (2016) doi:10.1109/ipemc.2016.7512408 – 10.1109/ipemc.2016.7512408
- Li, X., Tang, Y., Wu, X. & Geng, Y. Simplified multi-objective co-control to improve performance of three-phase grid-connected inverters under unbalanced grid conditions. 2016 Asian Conference on Energy, Power and Transportation Electrification (ACEPT) 1–6 (2016) doi:10.1109/acept.2016.7811525 – 10.1109/acept.2016.7811525
- Molina, M. G. & Mercado, P. E. Power Flow Stabilization and Control of Microgrid with Wind Generation by Superconducting Magnetic Energy Storage. IEEE Trans. Power Electron. 26, 910–922 (2011) – 10.1109/tpel.2010.2097609
- Liu, F. et al. Experimental Evaluation of Nonlinear Robust Control for SMES to Improve the Transient Stability of Power Systems. IEEE Trans. On Energy Conversion 19, 774–782 (2004) – 10.1109/tec.2004.827703
- Yasin, A. R., Ashraf, M., Bhatti, A. I., Ahmad, S. & Rashid, M. Sliding mode control for efficient utilization of renewable energy sources in DC micro grid: A comparison with a linear PID controller. 2016 International Conference and Exposition on Electrical and Power Engineering (EPE) 621–625 (2016) doi:10.1109/icepe.2016.7781414 – 10.1109/icepe.2016.7781414
- Mahmood, H., Michaelson, D. & Jiang, J. Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances. IEEE Trans. Power Electron. 30, 1605–1617 (2015) – 10.1109/tpel.2014.2314721
- Nguyen, T.-T., Yoo, H.-J. & Kim, H.-M. Applying Model Predictive Control to SMES System in Microgrids for Eddy Current Losses Reduction. IEEE Trans. Appl. Supercond. 26, 1–5 (2016) – 10.1109/tasc.2016.2524511
- Yang, N., Gao, F., Paire, D., Miraoui, A. & Liu, W. Distributed control of multi‐time scale DC microgrid based on ADRC. IET Power Electronics 10, 329–337 (2017) – 10.1049/iet-pel.2016.0101
- Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities. IEEE Control Syst. 34, 87–97 (2014) – 10.1109/mcs.2014.2320397
- Huang, Y. et al. Active disturbance rejection control: Methodology, practice and analysis. Proceedings of the 33rd Chinese Control Conference 1–5 (2014) doi:10.1109/chicc.2014.6896585 – 10.1109/chicc.2014.6896585
- Chen, Y. et al. Passivity-based control of cascaded multilevel converter based D-STATCOM integrated with distribution transformer. Electric Power Systems Research 154, 1–12 (2018) – 10.1016/j.epsr.2017.08.001
- Serra, F. M., De Angelo, C. H. & Forchetti, D. G. Interconnection and damping assignment control of a three-phase front end converter. International Journal of Electrical Power & Energy Systems 60, 317–324 (2014) – 10.1016/j.ijepes.2014.03.033
- Wang, J. & Yin, H. Passivity Based Controller Design Based on EL and PCHD Model. Procedia Engineering 15, 33–37 (2011) – 10.1016/j.proeng.2011.08.008
- Marzoughi, A., Burgos, R., Boroyevich, D. & Xue, Y. Design and Comparison of Cascaded H-Bridge, Modular Multilevel Converter, and 5-L Active Neutral Point Clamped Topologies for Motor Drive Applications. IEEE Trans. on Ind. Applicat. 54, 1404–1413 (2018) – 10.1109/tia.2017.2767538
- Sanz, I., Moranchel, M., Bueno, E. J. & Rodriguez, F. J. Analysis of medium voltage modular multilevel converters for FACTS applications. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society 6459–6464 (2016) doi:10.1109/iecon.2016.7793269 – 10.1109/iecon.2016.7793269
- Jing, T. & Maklakov, A. S. A Review of Voltage Source Converters for Energy Applications. 2018 International Ural Conference on Green Energy (UralCon) 275–281 (2018) doi:10.1109/uralcon.2018.8544364 – 10.1109/uralcon.2018.8544364
- Novotny, D. W. & Lipo, T. A. Vector Control and Dynamics of AC Drives. (1996) doi:10.1093/oso/9780198564393.001.0001 – 10.1093/oso/9780198564393.001.0001
- Bose B.K., Modern power electronics and AC drives (1986)
- Svensson, J., Bongiorno, M. & Sannino, A. Practical Implementation of Delayed Signal Cancellation Method for Phase-Sequence Separation. IEEE Trans. Power Delivery 22, 18–26 (2007) – 10.1109/tpwrd.2006.881469
- Hagiwara, M., Maeda, R. & Akagi, H. Negative-sequence reactive-power control by the modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC). 2010 IEEE Energy Conversion Congress and Exposition 3949–3954 (2010) doi:10.1109/ecce.2010.5617757 – 10.1109/ecce.2010.5617757
- Moon, J.-W., Gwon, J.-S., Park, J.-W., Kang, D.-W. & Kim, J.-M. Model Predictive Control With a Reduced Number of Considered States in a Modular Multilevel Converter for HVDC System. IEEE Trans. Power Delivery 30, 608–617 (2015) – 10.1109/tpwrd.2014.2303172
- Qingrui Tu, Zheng Xu & Lie Xu. Reduced Switching-Frequency Modulation and Circulating Current Suppression for Modular Multilevel Converters. IEEE Trans. Power Delivery 26, 2009–2017 (2011) – 10.1109/tpwrd.2011.2115258
- Shi, X. et al. Mechanism Analysis and Experimental Validation of Employing Superconducting Magnetic Energy Storage to Enhance Power System Stability. Energies 8, 656–681 (2015) – 10.3390/en8010656
- Komurcugil, H. Improved passivity‐based control method and its robustness analysis for single‐phase uninterruptible power supply inverters. IET Power Electronics 8, 1558–1570 (2015) – 10.1049/iet-pel.2014.0706
- Yazdani, A. & Iravani, R. Voltage‐Sourced Converters in Power Systems. (2010) doi:10.1002/9780470551578 – 10.1002/9780470551578