Boundary triplets for skew-symmetric operators and the generation of strongly continuous semigroups
Authors
Abstract
We give a self-contained and streamlined exposition of a generation theorem for C_0-semigroups based on the method of boundary triplets. We apply this theorem to port-Hamiltonian systems where we discuss recent results appearing in stability and control theory. We give detailed proofs and require only a basic knowledge of operator and semigroup theory.
Keywords
boundary triplet; C-semigroup; dissipative extension; port-Hamiltonian system; 47D06; 35G15; 47B44
Citation
- Journal: Analysis Mathematica
- Year: 2017
- Volume: 43
- Issue: 4
- Pages: 657–686
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s10476-017-0509-6
BibTeX
@article{Wegner_2017,
title={{Boundary triplets for skew-symmetric operators and the generation of strongly continuous semigroups}},
volume={43},
ISSN={1588-273X},
DOI={10.1007/s10476-017-0509-6},
number={4},
journal={Analysis Mathematica},
publisher={Springer Science and Business Media LLC},
author={Wegner, S.-A.},
year={2017},
pages={657--686}
}
References
- Y. Arlinskiĭ. Y. Arlinskiĭ, Boundary triplets and maximal accretive extensions of sectorial operators, in: Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Ser., vol. 404, Cambridge Univ. Press (Cambridge, 2012), pp. 35–72. (2012)
- Arov, D. Z., Kurula, M. & Staffans, O. J. Boundary control state/signal systems and boundary triplets. Operator Methods for Boundary Value Problems 73–86 (2012) doi:10.1017/cbo9781139135061.005 – 10.1017/cbo9781139135061.005
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Behrndt, J., Hassi, S., de Snoo, H. & Wietsma, R. Square‐integrable solutions and Weyl functions for singular canonical systems. Mathematische Nachrichten vol. 284 1334–1384 (2011) – 10.1002/mana.201000017
- Behrndt, J. & Langer, M. Boundary value problems for elliptic partial differential operators on bounded domains. Journal of Functional Analysis vol. 243 536–565 (2007) – 10.1016/j.jfa.2006.10.009
- Behrndt, J. & Langer, M. Elliptic operators, Dirichlet-to-Neumann maps and quasi boundary triples. Operator Methods for Boundary Value Problems 121–160 (2012) doi:10.1017/cbo9781139135061.007 – 10.1017/cbo9781139135061.007
- J. B. Conway. J. B. Conway, A Course in Functional Analysis, second ed., Springer-Verlag (New York, 1990). (1990)
- Derkach, V., Hassi, S., Malamud, M. & de Snoo, H. Boundary relations and their Weyl families. Transactions of the American Mathematical Society vol. 358 5351–5401 (2006) – 10.1090/s0002-9947-06-04033-5
- Derkach, V., Hassi, S., Malamud, M. & de Snoo, H. Boundary relations and generalized resolvents of symmetric operators. Russian Journal of Mathematical Physics vol. 16 17–60 (2009) – 10.1134/s1061920809010026
- Derkach, V. A., Hassi, S., Malamud, M. M. & de Snoo, H. S. V. Boundary triplets and Weyl functions. Recent developments. Operator Methods for Boundary Value Problems 161–220 (2012) doi:10.1017/cbo9781139135061.008 – 10.1017/cbo9781139135061.008
- Derkach, V. A. & Malamud, M. M. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. Journal of Functional Analysis vol. 95 1–95 (1991) – 10.1016/0022-1236(91)90024-y
- V. A. Derkach. V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, Analysis. 3. J. Math. Sci., 73 (1995), 141–242. (1995)
- K.-J. Engel. K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag (New York, 2000). (2000)
- Gorbachuk, V. I. & Gorbachuk, M. L. Boundary Value Problems for Operator Differential Equations. (Springer Netherlands, 1991). doi:10.1007/978-94-011-3714-0 – 10.1007/978-94-011-3714-0
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- B. Jacob. B. Jacob, K. Morris, and H. Zwart, C0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain, J. Evol. Equ., (2015), to appear, DOI: 10.1007/s00028-014-0271-1. (2015)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- M. Kurula. M. Kurula and H. Zwart, Linear wave systems on n-D spatial domains, Internat. J. Control, 88 (2015), 1063–1077. (2015)
- M. M. Malamud. M. M. Malamud, On a formula for the generalized resolvents of a non-densely defined Hermitian operator, Ukra¨ın. Mat. Zh., 44 (1992), 1658–1688. (1992)
- Malinen, J. & Staffans, O. J. Impedance Passive and Conservative Boundary Control Systems. Complex Analysis and Operator Theory vol. 1 279–300 (2007) – 10.1007/s11785-006-0009-3
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences (Springer New York, 1983). doi:10.1007/978-1-4612-5561-1 – 10.1007/978-1-4612-5561-1
- Phillips, R. S. Dissipative operators and hyperbolic systems of partial differential equations. Transactions of the American Mathematical Society vol. 90 193–254 (1959) – 10.1090/s0002-9947-1959-0104919-1
- W. Rudin. W. Rudin, Functional Analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc. (New York, 1991). (1991)
- Schmüdgen, K. Unbounded Self-Adjoint Operators on Hilbert Space. Graduate Texts in Mathematics (Springer Netherlands, 2012). doi:10.1007/978-94-007-4753-1 – 10.1007/978-94-007-4753-1
- Sz.-Nagy, B., Foias, C., Bercovici, H. & Kérchy, L. Harmonic Analysis of Operators on Hilbert Space. (Springer New York, 2010). doi:10.1007/978-1-4419-6094-8 – 10.1007/978-1-4419-6094-8
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176