APPROXIMATION OF THE TELEGRAPHER'S EQUATIONS WITH DISSIPATION
Authors
C. Chera, A. Nakrachi, G. Dauphin-Tanguy
Abstract
We have already proposed a representation and spatial discretization of line transmission in terms of Bond Graph (Nakrachi, 2003). In this paper, one shows that we preserve the Dirac structure of a distributed parameter system represented in the form of a port-Hamiltonian, after a space discretization. Indeed, the conservation of the Dirac structure was shown only in the conservative case, without dissipation. The study is applied to the case of a transmission line represented by the telegrapher’s equations.
Keywords
approximation, dirac structure, dissipation, distributed systems, telegrapher’s equations
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2007
- Volume: 40
- Issue: 18
- Pages: 247–252
- Publisher: Elsevier BV
- DOI: 10.3182/20070927-4-ro-3905.00042
- Note: 4th IFAC Conference on Management and Control of Production and Logistics
BibTeX
@article{Chera_2007,
title={{APPROXIMATION OF THE TELEGRAPHER’S EQUATIONS WITH DISSIPATION}},
volume={40},
ISSN={1474-6670},
DOI={10.3182/20070927-4-ro-3905.00042},
number={18},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Chera, C. and Nakrachi, A. and Dauphin-Tanguy, G.},
year={2007},
pages={247--252}
}References
- Bossavit, (1991)
- Golo, “Approximation of the telegrapher’s equations”. (2002)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Maschke, B. & van der Schaft, A. 4 Compositional Modelling of Distributed-Parameter Systems. Lecture Notes in Control and Information Sciences 115–154 (2005) doi:10.1007/11334774_4 – 10.1007/11334774_4
- Nakrachi, “Bond Graph for distributed parameter systems: The telegrapher equation case” IMACS-IEEE “CESA’03”. Lille (2003)
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9