Analyzing the Dynamics and Stability of DQ0 Systems Based on a Port-Hamiltonian Approach
Authors
Yoash Levron, Vadim Kaparin, Juri Belikov
Abstract
Many open challenges are associated with the nonlinear behavior of large-scale power systems, especially when such systems include small distributed generators and fast power electronics based devices. To better understand the complex dynamics of power systems, several authors suggest that such systems may be analyzed using port-Hamiltonian representations. In this work we extend this approach, and propose a port-Hamiltonian description for transmission networks which are modeled based on dq0 quantities. We present several results that show how to analyze the system stability and the behavior of the Hamiltonian. The results are demonstrated in several test cases.
Citation
- Journal: 2019 27th Mediterranean Conference on Control and Automation (MED)
- Year: 2019
- Volume:
- Issue:
- Pages: 410–415
- Publisher: IEEE
- DOI: 10.1109/med.2019.8798495
BibTeX
@inproceedings{Levron_2019,
title={{Analyzing the Dynamics and Stability of DQ0 Systems Based on a Port-Hamiltonian Approach}},
DOI={10.1109/med.2019.8798495},
booktitle={{2019 27th Mediterranean Conference on Control and Automation (MED)}},
publisher={IEEE},
author={Levron, Yoash and Kaparin, Vadim and Belikov, Juri},
year={2019},
pages={410--415}
}
References
- consortium, Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- van der Schaft, A. & Stegink, T. Perspectives in modeling for control of power networks. Annual Reviews in Control vol. 41 119–132 (2016) – 10.1016/j.arcontrol.2016.04.017
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Belikov, J. & Levron, Y. A Sparse Minimal-Order Dynamic Model of Power Networks Based on dq0 Signals. IEEE Transactions on Power Systems vol. 33 1059–1067 (2018) – 10.1109/tpwrs.2017.2702746
- fitzgerald, Electric Machinery (2003)
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- khalil, Nonlinear Systems (2002)
- Belikov, J. & Levron, Y. Integration of long transmission lines in large-scale dq0 dynamic models. Electrical Engineering vol. 100 1219–1228 (2017) – 10.1007/s00202-017-0582-7
- Macias, J. A. R., Exposito, A. G. & Soler, A. B. A Comparison of Techniques for State-Space Transient Analysis of Transmission Lines. IEEE Transactions on Power Delivery vol. 20 894–903 (2005) – 10.1109/tpwrd.2005.844271
- Baimel, D., Belikov, J., Guerrero, J. M. & Levron, Y. Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame: A Survey. IEEE Access vol. 5 21323–21335 (2017) – 10.1109/access.2017.2758523
- demiray, Simulation of Power System Dynamics Using Dynamic Phasor Models (2008)
- Analysis of Electric Machinery and Drive Systems. (2013) doi:10.1002/9781118524336 – 10.1002/9781118524336
- Levron, Y. & Belikov, J. Modeling power networks using dynamic phasors in the dq0 reference frame. Electric Power Systems Research vol. 144 233–242 (2017) – 10.1016/j.epsr.2016.11.024
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica vol. 74 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems vol. 19 1387–1401 (2004) – 10.1109/tpwrs.2004.825981
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002