Authors

Mutaz Ryalat, Dina Shona Laila

Abstract

We develop a method to simplify the partial differential equations (PDEs) associated to the potential energy for interconnection and damping assignment passivity based control (IDA-PBC) of a class of underactuated mechanical systems (UMSs). Solving the PDEs, also called the matching equations, is the main difficulty in the construction and application of the IDA-PBC. We propose a simplification to the potential energy PDEs through a particular parametrization of the closed-loop inertia matrix that appears as a coupling term with the inverse of the original inertia matrix. The parametrization accounts for kinetic energy shaping, which is then used to simplify the potential energy PDEs and their solution that is used for the potential energy shaping. This energy shaping procedure results in a closed-loop UMS with a modified energy function. This approach avoids the cancellation of nonlinearities, and extends the application of this method to a larger class of systems, including separable and non-separable port-controlled Hamiltonian (PCH) systems. Applications to the inertia wheel pendulum and the rotary inverted pendulum are presented, and some realistic simulations are presented which validate the proposed control design method and prove that global stabilization of these systems can be achieved. Experimental validation of the proposed method is demonstrated using a laboratory set-up of the rotary pendulum. The robustness of the closed-loop system with respect to external disturbances is also experimentally verified.

Keywords

hamiltonian systems, inertia wheel pendulum, nonlinear control, passivity-based control, rotary inverted pendulum, underactuated systems

Citation

  • Journal: European Journal of Control
  • Year: 2016
  • Volume: 27
  • Issue:
  • Pages: 1–16
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ejcon.2015.12.001

BibTeX

@article{Ryalat_2016,
  title={{A simplified IDA-PBC design for underactuated mechanical systems with applications}},
  volume={27},
  ISSN={0947-3580},
  DOI={10.1016/j.ejcon.2015.12.001},
  journal={European Journal of Control},
  publisher={Elsevier BV},
  author={Ryalat, Mutaz and Laila, Dina Shona},
  year={2016},
  pages={1--16}
}

Download the bib file

References

  • Acosta, Furuta׳s pendulum. Math. Probl. Eng. (2010)
  • Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Trans. Automat. Contr. 50, 1936–1955 (2005) – 10.1109/tac.2005.860292
  • Angeli, D. Almost global stabilization of the inverted pendulum via continuous state feedback. Automatica 37, 1103–1108 (2001) – 10.1016/s0005-1098(01)00064-4
  • A˚ström, K. J., Aracil, J. & Gordillo, F. A family of smooth controllers for swinging up a pendulum. Automatica 44, 1841–1848 (2008) – 10.1016/j.automatica.2007.10.040
  • Åström, K. J. & Furuta, K. Swinging up a pendulum by energy control. Automatica 36, 287–295 (2000) – 10.1016/s0005-1098(99)00140-5
  • Auckly, D. & Kapitanski, L. On the $\lambda$-Equations for Matching Control Laws. SIAM J. Control Optim. 41, 1372–1388 (2002) – 10.1137/s0363012901393304
  • Blankenstein, G., Ortega, R. & Van Der Schaft, A. J. The matching conditions of controlled Lagrangians and IDA-passivity based control. International Journal of Control 75, 645–665 (2002) – 10.1080/00207170210135939
  • Bloch, A. M., Leonard, N. E. & Marsden, J. E. Stabilization of the pendulum on a rotor arm by the method of controlled Lagrangians. Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C) vol. 1 500–505 – 10.1109/robot.1999.770026
  • Bloch, A. M., Leonard, N. E. & Marsden, J. E. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Trans. Automat. Contr. 45, 2253–2270 (2000) – 10.1109/9.895562
  • Block, (2007)
  • Chang, D. E. & McLenaghan, R. G. Geometric Criteria for the Quasi-Linearization of the Equations of Motion of Mechanical Systems. IEEE Trans. Automat. Contr. 58, 1046–1050 (2013) – 10.1109/tac.2012.2218671
  • Fantoni, (2002)
  • Fantoni, I. & Lozano, R. Stabilization of the Furuta pendulum around its homoclinic orbit. International Journal of Control 75, 390–398 (2002) – 10.1080/0020717011011226
  • Gomez-Estern, F., Ortega, R., Rubio, F. R. & Aracil, J. Stabilization of a class of underactuated mechanical systems via total energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 2 1137–1143 – 10.1109/cdc.2001.981038
  • Khalil, (2002)
  • Kotyczka, P. & Sarras, I. On the equivalence of two nonlinear control approaches: Immersion and invariance and IDA-PBC. European Journal of Control 19, 445–453 (2013)10.1016/j.ejcon.2013.09.008
  • Laila, D. S. & Astolfi, A. DISCRETE-TIME IDA-PBC DESIGN FOR SEPARABLE HAMILTONIAN SYSTEMS. IFAC Proceedings Volumes 38, 838–843 (2005) – 10.3182/20050703-6-cz-1902.00540
  • Lewis, A. D. Potential energy shaping after kinetic energy shaping. Proceedings of the 45th IEEE Conference on Decision and Control 3339–3344 (2006) doi:10.1109/cdc.2006.376885 – 10.1109/cdc.2006.376885
  • Liu, Y. & Yu, H. A survey of underactuated mechanical systems. IET Control Theory & Appl 7, 921–935 (2013) – 10.1049/iet-cta.2012.0505
  • D. Mahindrakar, A., Astolfi, A., Ortega, R. & Viola, G. Further constructive results on interconnection and damping assignment control of mechanical systems: the Acrobot example. Int. J. Robust Nonlinear Control 16, 671–685 (2006) – 10.1002/rnc.1088
  • Nair, S. & Leonard, N. E. A normal form for energy shaping: application to the Furuta pendulum. Proceedings of the 41st IEEE Conference on Decision and Control, 2002. vol. 1 516–521 – 10.1109/cdc.2002.1184548
  • Olsson, H., Åström, K. J., Canudas de Wit, C., Gäfvert, M. & Lischinsky, P. Friction Models and Friction Compensation. European Journal of Control 4, 176–195 (1998) – 10.1016/s0947-3580(98)70113-x
  • Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
  • Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Ryalat, M. & Laila, D. S. IDA-PBC for a class of underactuated mechanical systems with application to a rotary inverted pendulum. 52nd IEEE Conference on Decision and Control 5240–5245 (2013) doi:10.1109/cdc.2013.6760713 – 10.1109/cdc.2013.6760713
  • Sandoval, J., Ortega, R. & Kelly, R. Interconnection and Damping Assignment Passivity—Based Control of the Pendubot. IFAC Proceedings Volumes 41, 7700–7704 (2008) – 10.3182/20080706-5-kr-1001.01302
  • Sarras, I., Acosta, J. Á., Ortega, R. & Mahindrakar, A. D. Constructive immersion and invariance stabilization for a class of underactuated mechanical systems. Automatica 49, 1442–1448 (2013)10.1016/j.automatica.2013.01.059
  • Spong, M. W. Partial feedback linearization of underactuated mechanical systems. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94) vol. 1 314–321 – 10.1109/iros.1994.407375
  • Spong, M. W., Block, D. J. & Astrom, K. J. The Mechatronics Control Kit for education and research. Proceedings of the 2001 IEEE International Conference on Control Applications (CCA’01) (Cat. No.01CH37204) 105–110 doi:10.1109/cca.2001.973846 – 10.1109/cca.2001.973846
  • Spong, M. W., Corke, P. & Lozano, R. Nonlinear control of the Reaction Wheel Pendulum. Automatica 37, 1845–1851 (2001) – 10.1016/s0005-1098(01)00145-5
  • van der Burg, J. C. M., Ortega, R., Scherpen, J. M. A., Acosta, J. A. & Siguerdidjane, H. B. An experimental application of Total Energy Shaping Control: Stabilization of the inverted pendulum on a cart in the presence of friction. 2007 European Control Conference (ECC) 1990–1996 (2007) doi:10.23919/ecc.2007.7068504 – 10.23919/ecc.2007.7068504
  • van der Schaft, A. J. Stabilization of Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 10, 1021–1035 (1986) – 10.1016/0362-546x(86)90086-6
  • Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Trans. Automat. Contr. 55, 1059–1074 (2010) – 10.1109/tac.2010.2042010
  • Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Trans. Automat. Contr. 52, 1093–1099 (2007) – 10.1109/tac.2007.899064