A port-Hamiltonian Approach to Cummins’ Equation for Floater Arrays with Linear Power-Take Off Systems
Authors
M.Z. Almuzakki, J.J. Barradas-Berglind, Y. Wei, M. Muñoz-Arias, A.I. Vakis, B. Jayawardhana
Abstract
In this paper, we present a port-Hamiltonian (pH) modeling of the wave-structure interaction described by the Cummins’ equation. This allows us to directly interconnect the wave-structure pH model with an existing pH model of (an array of) wave energy converters (WEC)s, thereby enabling the application of existing pH-based control and optimization methods to the interconnected WEC. We present a Hamiltonian function corresponding to the radiation terms, based on which a pH model of radiation forces is constructed. Lastly, using a simple array of floaters, where each one is connected to a linear power take-off (PTO) system, we compare the simulation of our pH model with the results of the standard open-source toolbox WEC-Sim, which is designed for simulating any type of WEC.
Keywords
Wave energy; Wave-structure interaction; Wave energy converter; WEC array; port-Hamiltonian modeling
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 155–160
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.043
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Almuzakki_2018,
title={{A port-Hamiltonian Approach to Cummins’ Equation for Floater Arrays with Linear Power-Take Off Systems}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.043},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Almuzakki, M.Z. and Barradas-Berglind, J.J. and Wei, Y. and Muñoz-Arias, M. and Vakis, A.I. and Jayawardhana, B.},
year={2018},
pages={155--160}
}
References
- Barradas-Berglind, J. et al. Energy capture optimization for an adaptive wave energy converter. Progress in Renewable Energies Offshore 171–178 (2016) doi:10.1201/9781315229256-22 – 10.1201/9781315229256-22
- Cummins, (1962)
- Duindam, (2009)
- Faedo, N., Olaya, S. & Ringwood, J. V. Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview. IFAC Journal of Systems and Control vol. 1 37–56 (2017) – 10.1016/j.ifacsc.2017.07.001
- Henderson, R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy vol. 31 271–283 (2006) – 10.1016/j.renene.2005.08.021
- Korde, (2016)
- Lagoun, Ocean wave converters: State of the art and current status. In Proc. of IEEE EnergyCon (2010)
- Lofberg, J. YALMIP : a toolbox for modeling and optimization in MATLAB. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) 284–289 doi:10.1109/cacsd.2004.1393890 – 10.1109/cacsd.2004.1393890
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Perez, T. & Fossen, T. I. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures. Modeling, Identification and Control: A Norwegian Research Bulletin vol. 30 1–15 (2009) – 10.4173/mic.2009.1.1
- Energy-Maximizing Control of Wave-Energy Converters: The Development of Control System Technology to Optimize Their Operation. IEEE Control Systems vol. 34 30–55 (2014) – 10.1109/mcs.2014.2333253
- Ruehl, K., Michelen, C., Kanner, S., Lawson, M. & Yu, Y.-H. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool. Volume 9B: Ocean Renewable Energy (2014) doi:10.1115/omae2014-24312 – 10.1115/omae2014-24312
- Vakis, A. I. & Anagnostopoulos, J. S. Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter. Renewable Energy vol. 96 531–547 (2016) – 10.1016/j.renene.2016.04.076
- van der Schaft, (2000)