A Novel Passivity Based Control of Active Magnetic Bearing Systems without Conventional Cross-Feedback
Authors
Satoru SAKAI, Kenta KURIYAMA, Kenzo NONAMI
Abstract
This paper gives a new passivity based control of active magnetic bearing systems. First we give a new modeling in port-Hamiltonian form of flywheel systems. Second, we give a new passivity based control which does not have any canceling term for the gyroscopic effect unlike the conventional cross-feedback control, and also does not have any gains to make the closed-loop unstable unlike PID feedback control. In this paper, the linear control is especially studied from the viewpoint of comparisons. Finally we give some simulation and experimental results and confirm the validity of the control methodology in the presence of unbalance influence.
Citation
- Journal: Journal of System Design and Dynamics
- Year: 2009
- Volume: 3
- Issue: 4
- Pages: 540–550
- Publisher: Japan Society of Mechanical Engineers
- DOI: 10.1299/jsdd.3.540
BibTeX
@article{SAKAI_2009,
title={{A Novel Passivity Based Control of Active Magnetic Bearing Systems without Conventional Cross-Feedback}},
volume={3},
ISSN={1881-3046},
DOI={10.1299/jsdd.3.540},
number={4},
journal={Journal of System Design and Dynamics},
publisher={Japan Society of Mechanical Engineers},
author={SAKAI, Satoru and KURIYAMA, Kenta and NONAMI, Kenzo},
year={2009},
pages={540--550}
}
References
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Arimoto, S. Control Theory of Non-linear Mechanical Systems. (1996) doi:10.1093/oso/9780198562917.001.0001 – 10.1093/oso/9780198562917.001.0001
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Sakai, S. & Stramigioli, S. Port-Hamiltonian approaches to motion generation for mechanical systems. Proceedings 2007 IEEE International Conference on Robotics and Automation 1948–1953 (2007) doi:10.1109/robot.2007.363607 – 10.1109/robot.2007.363607
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Nonami, K. & Ito, T. μ synthesis of flexible rotor-magnetic bearing systems. IEEE Trans. Contr. Syst. Technol. 4, 503–512 (1996) – 10.1109/87.531917
- Sivrioglu, S. & Nonami, K. Sliding mode control with time-varying hyperplane for AMB systems. IEEE/ASME Trans. Mechatron. 3, 51–59 (1998) – 10.1109/3516.662868
- BLEULER, H. A Survey of Magnetic Levitation and Magnetic Bearing Types. JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry 35, 335–342 (1992) – 10.1299/jsmec1988.35.335
- HENRIKSON, C., LYMAN, J. & STUDER, P. Magnetically suspended momentum wheels for spacecraft stabilization. 12th Aerospace Sciences Meeting (1974) doi:10.2514/6.1974-128 – 10.2514/6.1974-128
- Tsiotras, P. & Arcak, M. Low-bias control of AMB subject to voltage saturation: state-feedback and observer designs. IEEE Trans. Contr. Syst. Technol. 13, 262–273 (2005) – 10.1109/tcst.2004.839562