A Nonlinear Control Strategy for DC-DC Converter with Unknown Constant Power Load Using Damping and Interconnection Injecting
Authors
Mian Wang, Fen Tang, Xuezhi Wu, Jingkai Niu, Yajing Zhang, Jiuhe Wang
Abstract
DC-DC converters with constant power loads are mostly used in DC microgrids. Negative impedance and large disturbances of constant power loads may lead to the instability of DC-DC converters. To address this issue, a nonlinear control strategy consisting of an improved passivity-based controller and nonlinear power observer is proposed in this paper. First, an improved passivity-based controller is designed based on the port-controlled Hamiltonian with dissipation model. By proper damping and interconnection injecting, the fast dynamic response of output voltage and stability of the DC-DC converter is achieved. Second, the constant power load is observed by a nonlinear power observer, which is adopted to estimate the power variation of the constant power load within a small settling time and improve the adaptability of the DC-DC converter under power disturbance. Finally, the simulation and experimental results are presented, which illustrate the proposed control strategy not only ensures the stability of the DC-DC converter under large disturbances, but also can track the desired operating point with low voltage overshoot in no more than 10 milliseconds.
Citation
- Journal: Energies
- Year: 2021
- Volume: 14
- Issue: 11
- Pages: 3031
- Publisher: MDPI AG
- DOI: 10.3390/en14113031
BibTeX
@article{Wang_2021,
title={{A Nonlinear Control Strategy for DC-DC Converter with Unknown Constant Power Load Using Damping and Interconnection Injecting}},
volume={14},
ISSN={1996-1073},
DOI={10.3390/en14113031},
number={11},
journal={Energies},
publisher={MDPI AG},
author={Wang, Mian and Tang, Fen and Wu, Xuezhi and Niu, Jingkai and Zhang, Yajing and Wang, Jiuhe},
year={2021},
pages={3031}
}
References
- Hamzeh, M., Ghazanfari, A., Mohamed, Y. A.-R. I. & Karimi, Y. Modeling and Design of an Oscillatory Current-Sharing Control Strategy in DC Microgrids. IEEE Trans. Ind. Electron. 62, 6647–6657 (2015) – 10.1109/tie.2015.2435703
- Huang, P.-H., Liu, P.-C., Xiao, W. & El Moursi, M. S. A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids. IEEE Trans. Smart Grid 6, 1096–1106 (2015) – 10.1109/tsg.2014.2357179
- Kolluri, R. R., Mareels, I. & de Hoog, J. Controlling DC microgrids in communities, buildings and data centers. IET Smart Grid 3, 376–384 (2020) – 10.1049/iet-stg.2019.0281
- Lu, DC Microgrids—Part I: A Review of Control Strategies and Stabiliza-tion Techniques. IEEE Trans. Power Electron. (2016)
- Su, M., Liu, Z., Sun, Y., Han, H. & Hou, X. Stability Analysis and Stabilization Methods of DC Microgrid With Multiple Parallel-Connected DC–DC Converters Loaded by CPLs. IEEE Trans. Smart Grid 9, 132–142 (2018) – 10.1109/tsg.2016.2546551
- Farsizadeh, An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid. IEEE Trans. Circuits Syst. II Express Briefs (2020)
- Hamidi, S. A. & Nasiri, A. Stability analysis of a DC-DC converter for battery energy storage system feeding CPL. 2015 IEEE International Telecommunications Energy Conference (INTELEC) (2015) doi:10.1109/intlec.2015.7572343 – 10.1109/intlec.2015.7572343
- El Aroudi, A., Haroun, R., Al-Numay, M. S., Calvente, J. & Giral, R. Fast-Scale Stability Analysis of a DC–DC Boost Converter With a Constant Power Load. IEEE J. Emerg. Sel. Topics Power Electron. 9, 549–558 (2021) – 10.1109/jestpe.2019.2960564
- Lu, X. et al. Stability Enhancement Based on Virtual Impedance for DC Microgrids With Constant Power Loads. IEEE Trans. Smart Grid 6, 2770–2783 (2015) – 10.1109/tsg.2015.2455017
- Azizi, A. & Hamzeh, M. Stability Analysis of a DC Microgrid With Constant Power Loads Using Small-Signal Equivalent Circuit. 2020 11th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC) 1–6 (2020) doi:10.1109/pedstc49159.2020.9088397 – 10.1109/pedstc49159.2020.9088397
- Liu, S., Zhu, W., Cheng, Y. & Xing, B. Modeling and small-signal stability analysis of an islanded DC microgrid with dynamic loads. 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC) 866–871 (2015) doi:10.1109/eeeic.2015.7165277 – 10.1109/eeeic.2015.7165277
- Yue, X., Wang, X. & Blaabjerg, F. Review of Small-Signal Modeling Methods Including Frequency-Coupling Dynamics of Power Converters. IEEE Trans. Power Electron. 34, 3313–3328 (2019) – 10.1109/tpel.2018.2848980
- Tu, G., Li, Y. & Xiang, J. A nonlinear boundary controller for buck converters feeding constant-power loads. 2017 36th Chinese Control Conference (CCC) 698–703 (2017) doi:10.23919/chicc.2017.8027424 – 10.23919/chicc.2017.8027424
- Bacha, S., Munteanu, I. & Bratcu, A. I. Power Electronic Converters Modeling and Control. Advanced Textbooks in Control and Signal Processing (Springer London, 2014). doi:10.1007/978-1-4471-5478-5 – 10.1007/978-1-4471-5478-5
- Zhaohui, Exact Linearization and Optimal Tracking Control of Boost Converter with Constant Power Loads. Proc. CSEE (2007)
- Arora, S., Balsara, P. & Bhatia, D. Input–Output Linearization of a Boost Converter With Mixed Load (Constant Voltage Load and Constant Power Load). IEEE Trans. Power Electron. 34, 815–825 (2019) – 10.1109/tpel.2018.2813324
- Ahmad, S. & Ali, A. Active disturbance rejection control of DC–DC boost converter: a review with modifications for improved performance. IET Power Electronics 12, 2095–2107 (2019) – 10.1049/iet-pel.2018.5767
- Martinez‐Treviño, B. A., El Aroudi, A., Vidal‐Idiarte, E., Cid‐Pastor, A. & Martinez‐Salamero, L. Sliding‐mode control of a boost converter under constant power loading conditions. IET Power Electronics 12, 521–529 (2019) – 10.1049/iet-pel.2018.5098
- Wu, J. & Lu, Y. Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load. IEEE Access 7, 50797–50807 (2019) – 10.1109/access.2019.2910936
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Salimi, M. & Eghlim, A. L. Passivity-based control of the DC-DC buck converters in high-power applications. TENCON 2014 - 2014 IEEE Region 10 Conference 1–6 (2014) doi:10.1109/tencon.2014.7022387 – 10.1109/tencon.2014.7022387
- Linares-Flores, J., Barahona-Avalos, J. L., Sira-Ramirez, H. & Contreras-Ordaz, M. A. Robust Passivity-Based Control of a Buck–Boost-Converter/DC-Motor System: An Active Disturbance Rejection Approach. IEEE Trans. on Ind. Applicat. 48, 2362–2371 (2012) – 10.1109/tia.2012.2227098
- Hernandez-Marquez, E., Silva-Ortigoza, R., Garcia-Sanchez, J. R., Marcelino-Aranda, M. & Saldana-Gonzalez, G. A DC/DC Buck-Boost Converter–Inverter–DC Motor System: Sensorless Passivity-Based Control. IEEE Access 6, 31486–31492 (2018) – 10.1109/access.2018.2846614
- Wang, B. & Feng, H. The Buck-Boost converter adopting passivity-based adaptive control strategy and its application. Proceedings of The 7th International Power Electronics and Motion Control Conference 1877–1882 (2012) doi:10.1109/ipemc.2012.6259124 – 10.1109/ipemc.2012.6259124
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Zeng, J., Zhang, Z. & Qiao, W. An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load. IEEE Trans. on Ind. Applicat. 50, 2314–2322 (2014) – 10.1109/tia.2013.2290872
- Pang, S. et al. Toward Stabilization of Constant Power Loads Using IDA-PBC for Cascaded LC Filter DC/DC Converters. IEEE J. Emerg. Sel. Topics Power Electron. 9, 1302–1314 (2021) – 10.1109/jestpe.2019.2945331
- Bottrell, N., Prodanovic, M. & Green, T. C. Dynamic Stability of a Microgrid With an Active Load. IEEE Trans. Power Electron. 28, 5107–5119 (2013) – 10.1109/tpel.2013.2241455
- Wang, J., Mu, X. & Li, Q.-K. Study of Passivity-Based Decoupling Control of T-NPC PV Grid-Connected Inverter. IEEE Trans. Ind. Electron. 64, 7542–7551 (2017) – 10.1109/tie.2017.2677341
- Gandhi, M. R. & Rathore, S. Comparative Study of Different Passivity-Based Non-linear Control of DC-DC Boost Converter. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT) 1–7 (2019) doi:10.1109/i-pact44901.2019.8960007 – 10.1109/i-pact44901.2019.8960007
- He, W. & Ortega, R. Design and Implementation of Adaptive Energy Shaping Control for DC–DC Converters With Constant Power Loads. IEEE Trans. Ind. Inf. 16, 5053–5064 (2020) – 10.1109/tii.2019.2953694
- He, W. et al. DC-DC Buck-Boost Converters with Unknown CPL: An Adaptive PBC. 2018 Annual American Control Conference (ACC) 6749–6754 (2018) doi:10.23919/acc.2018.8430834 – 10.23919/acc.2018.8430834
- Xu, Q., Xu, Y., Zhang, C. & Wang, P. A Robust Droop-Based Autonomous Controller for Decentralized Power Sharing in DC Microgrid Considering Large-Signal Stability. IEEE Trans. Ind. Inf. 16, 1483–1494 (2020) – 10.1109/tii.2019.2950208
- Xu, Q., Zhang, C., Wen, C. & Wang, P. A Novel Composite Nonlinear Controller for Stabilization of Constant Power Load in DC Microgrid. IEEE Trans. Smart Grid 10, 752–761 (2019) – 10.1109/tsg.2017.2751755