Comparative Study of Different Passivity-Based Non-linear Control of DC-DC Boost Converter
Authors
Mitesh R. Gandhi, Sandhya Rathore
Abstract
The DC-DC boost converter has a non-linear characteristic and the control-to-output transfer function of the linearised model exhibits a non-minimum phase system with a right-half-plane (RHP) zero. The consequence of this zero is a sluggish response of the converter and it’s difficult to design a controller that is robust against load variation. In this work, we present a non-linear passivity-based control (PBC) algorithm to regulate the output voltage of the DC-DC boost converter. This controller works on the principle of an ‘energy shaping plus damping injection’, which is obtained from non-linear dynamical feedback. The non-linear DC-DC boost converter is modeled by using Euler-Lagrange, Port-controlled Hamiltonian and Brayton-Moser equations. These different classical mechanics based controller’s design and their simulation results of input-output variables are compared under reference step changes and load perturbations in MATLAB/Simulink.
Citation
- Journal: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT)
- Year: 2019
- Volume:
- Issue:
- Pages: 1–7
- Publisher: IEEE
- DOI: 10.1109/i-pact44901.2019.8960007
BibTeX
@inproceedings{Gandhi_2019,
title={{Comparative Study of Different Passivity-Based Non-linear Control of DC-DC Boost Converter}},
DOI={10.1109/i-pact44901.2019.8960007},
booktitle={{2019 Innovations in Power and Advanced Computing Technologies (i-PACT)}},
publisher={IEEE},
author={Gandhi, Mitesh R. and Rathore, Sandhya},
year={2019},
pages={1--7}
}
References
- Maixe, J., Leyva, R., Martinez-Salamero, L. & Giral, R. Sliding-mode control of interleaved boost converters. IEEE Trans. Circuits Syst. I 47, 1330–1339 (2000) – 10.1109/81.883328
- Alvarez-Ramirez, J., Cervantes, I., Espinosa-Perez, G., Maya, P. & Morales, A. A stable design of PI control for DC-DC converters with an RHS zero. IEEE Trans. Circuits Syst. I 48, 103–106 (2001) – 10.1109/81.903192
- Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica 25, 877–888 (1989) – 10.1016/0005-1098(89)90054-x
- ramirez, Passivity-based controllers for the stabilization of DC-to-DC power converters. Automatica (1999)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Scherpen, J. M. A., Jeltsema, D. & Klaassens, J. B. Lagrangian modeling of switching electrical networks. Systems & Control Letters 48, 365–374 (2003) – 10.1016/s0167-6911(02)00290-6
- Lehman, B. & Bass, R. M. Extensions of averaging theory for power electronic systems. IEEE Trans. Power Electron. 11, 542–553 (1996) – 10.1109/63.506119
- Ortega, R. & Garcia-Canseco, E. Interconnection and damping assignment passivity-based control: towards a constructive procedure - Part I. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3412-3417 Vol.4 (2004) doi:10.1109/cdc.2004.1429236 – 10.1109/cdc.2004.1429236
- Raviraj, V. S. C. & Sen, P. C. Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters. IEEE Trans. on Ind. Applicat. 33, 518–524 (1997) – 10.1109/28.568018
- Forsyth, A. J. & Mollov, S. V. Modelling and control of DC-DC converters. Power Engineering Journal 12, 229–236 (1998) – 10.1049/pe:19980507
- Takashi Nabeshima, Terukazu Sato, Kimihiro Nishijima & Kenichi Onda. Hysteretic PWM control method for all types of DC-to-DC converters. INTELEC 07 - 29th International Telecommunications Energy Conference 856–860 (2007) doi:10.1109/intlec.2007.4448901 – 10.1109/intlec.2007.4448901
- Leyva, R. et al. Passivity-based integral control of a boost converter for large-signal stability. IEE Proc., Control Theory Appl. 153, 139–146 (2006) – 10.1049/ip-cta:20045223
- Jeltsema, D. & Scherpen, J. M. A. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters. IEEE Trans. Automat. Contr. 49, 1333–1344 (2004) – 10.1109/tac.2004.832236
- Sira-Ramírez, H. On the generalized PI sliding mode control of DC-to-DC power converters: A tutorial. International Journal of Control 76, 1018–1033 (2003) – 10.1080/0020717031000099047
- Mojallizadeh, M. R. & Badamchizadeh, M. A. Adaptive Passivity-Based Control of a Photovoltaic/Battery Hybrid Power Source via Algebraic Parameter Identification. IEEE J. Photovoltaics 6, 532–539 (2016) – 10.1109/jphotov.2016.2514715
- Zhijun Qian, Abdel-Rahman, O., Al-Atrash, H. & Batarseh, I. Modeling and Control of Three-Port DC/DC Converter Interface for Satellite Applications. IEEE Trans. Power Electron. 25, 637–649 (2010) – 10.1109/tpel.2009.2033926
- El Fadil, H. & Giri, F. Backstepping Based Control of PWM DC-DC Boost Power Converters. 2007 IEEE International Symposium on Industrial Electronics 395–400 (2007) doi:10.1109/isie.2007.4374630 – 10.1109/isie.2007.4374630