Authors

Liangcheng Cai, Zhengyou He, Haitao Hu

Abstract

The existed control methods of the multi-area load frequency control (LFC) system fail to decouple the total tie-line power flow. This defect can be addressed as a problem on how to effectively utilize the total tie-line power flow. To improve that defect, the energy and structure of multi-area LFC system have been carefully studied, such that, the energy goes through the systemic cascade parts and the systemic structure matrix is partially skew symmetry. Namely, the energy and structural properties of the multi-area LFC system are similar to the properties of Port-Hamiltonian (PH) system and cascade system. Inspired by the above properties, a new method based on the PH system and cascade system that is proposed to design some PID control laws for the multi-area LFC system successfully works out the aforementioned problem. Compared with the existed PID methods for the multi-area LFC system, the proposed method has two advantages, which are the decoupling of total tie-line power flow and the robust disturbance rejection. At last, simulations results demonstrate the validity and advantages of the proposed method.

Citation

  • Journal: IEEE Transactions on Power Systems
  • Year: 2017
  • Volume: 32
  • Issue: 3
  • Pages: 1689–1700
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tpwrs.2016.2605007

BibTeX

@article{Cai_2017,
  title={{A New Load Frequency Control Method of Multi-Area Power System via the Viewpoints of Port-Hamiltonian System and Cascade System}},
  volume={32},
  ISSN={1558-0679},
  DOI={10.1109/tpwrs.2016.2605007},
  number={3},
  journal={IEEE Transactions on Power Systems},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Cai, Liangcheng and He, Zhengyou and Hu, Haitao},
  year={2017},
  pages={1689--1700}
}

Download the bib file

References

  • Isidori, A. Nonlinear Control Systems II. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0549-7 – 10.1007/978-1-4471-0549-7
  • Saxena, S. & Hote, Y. V. Load Frequency Control in Power Systems via Internal Model Control Scheme and Model-Order Reduction. IEEE Transactions on Power Systems vol. 28 2749–2757 (2013) – 10.1109/tpwrs.2013.2245349
  • Mi, Y., Fu, Y., Wang, C. & Wang, P. Decentralized Sliding Mode Load Frequency Control for Multi-Area Power Systems. IEEE Transactions on Power Systems vol. 28 4301–4309 (2013) – 10.1109/tpwrs.2013.2277131
  • Rerkpreedapong, D., Hasanovic, A. & Feliachi, A. Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Transactions on Power Systems vol. 18 855–861 (2003) – 10.1109/tpwrs.2003.811005
  • Khodabakhshian, A. & Edrisi, M. A new robust PID load frequency controller. Control Engineering Practice vol. 16 1069–1080 (2008) – 10.1016/j.conengprac.2007.12.003
  • Chuang, N. Robust load‐frequency control in interconnected power systems. IET Control Theory & Applications vol. 10 67–75 (2016) – 10.1049/iet-cta.2015.0412
  • Mohamed, T. H., Bevrani, H., Hassan, A. A. & Hiyama, T. Decentralized model predictive based load frequency control in an interconnected power system. Energy Conversion and Management vol. 52 1208–1214 (2011) – 10.1016/j.enconman.2010.09.016
  • Yousef, H. A., AL-Kharusi, K., Albadi, M. H. & Hosseinzadeh, N. Load Frequency Control of a Multi-Area Power System: An Adaptive Fuzzy Logic Approach. IEEE Transactions on Power Systems vol. 29 1822–1830 (2014) – 10.1109/tpwrs.2013.2297432
  • Ersdal, A. M., Imsland, L. & Uhlen, K. Model Predictive Load-Frequency Control. IEEE Transactions on Power Systems vol. 31 777–785 (2016) – 10.1109/tpwrs.2015.2412614
  • Liu, H., Hu, Z., Song, Y. & Lin, J. Decentralized Vehicle-to-Grid Control for Primary Frequency Regulation Considering Charging Demands. IEEE Transactions on Power Systems vol. 28 3480–3489 (2013) – 10.1109/tpwrs.2013.2252029
  • Mu, Y., Wu, J., Ekanayake, J., Jenkins, N. & Jia, H. Primary Frequency Response From Electric Vehicles in the Great Britain Power System. IEEE Transactions on Smart Grid vol. 4 1142–1150 (2013) – 10.1109/tsg.2012.2220867
  • Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
  • Pourmousavi, S. A. & Nehrir, M. H. Introducing Dynamic Demand Response in the LFC Model. IEEE Transactions on Power Systems vol. 29 1562–1572 (2014) – 10.1109/tpwrs.2013.2296696
  • Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009)10.1016/j.automatica.2009.04.006
  • Pandey, S. K., Mohanty, S. R. & Kishor, N. A literature survey on load–frequency control for conventional and distribution generation power systems. Renewable and Sustainable Energy Reviews vol. 25 318–334 (2013) – 10.1016/j.rser.2013.04.029
  • Rahmani, M. & Sadati, N. Hierarchical optimal robust load-frequency control for power systems. IET Generation, Transmission & Distribution vol. 6 303–312 (2012) – 10.1049/iet-gtd.2011.0544
  • Cai, L., He, Y. & Wu, M. On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian systems. Nonlinear Dynamics vol. 72 91–99 (2012)10.1007/s11071-012-0693-7
  • safaei, Optimal load frequency control of an island small hydropower plant. Proc 3rd Conf Therm Power Plants (0)
  • Wen Tan. Unified Tuning of PID Load Frequency Controller for Power Systems via IMC. IEEE Transactions on Power Systems vol. 25 341–350 (2010) – 10.1109/tpwrs.2009.2036463
  • Farahani, M., Ganjefar, S. & Alizadeh, M. PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory & Applications vol. 6 1984–1992 (2012) – 10.1049/iet-cta.2011.0405
  • Ibraheem, Kumar, P. & Kothari, D. P. Recent Philosophies of Automatic Generation Control Strategies in Power Systems. IEEE Transactions on Power Systems vol. 20 346–357 (2005) – 10.1109/tpwrs.2004.840438
  • Tan, W. Decentralized load frequency controller analysis and tuning for multi-area power systems. Energy Conversion and Management vol. 52 2015–2023 (2011) – 10.1016/j.enconman.2010.12.011
  • Bevrani, H. Robust Power System Frequency Control. (Springer US, 2009). doi:10.1007/978-0-387-84878-5 – 10.1007/978-0-387-84878-5
  • Pham, T. N., Trinh, H. & Hien, L. V. Load Frequency Control of Power Systems With Electric Vehicles and Diverse Transmission Links Using Distributed Functional Observers. IEEE Transactions on Smart Grid vol. 7 238–252 (2016) – 10.1109/tsg.2015.2449877
  • Bevrani, H., Daneshmand, P. R., Babahajyani, P., Mitani, Y. & Hiyama, T. Intelligent LFC Concerning High Penetration of Wind Power: Synthesis and Real-Time Application. IEEE Transactions on Sustainable Energy vol. 5 655–662 (2014) – 10.1109/tste.2013.2290126
  • Bevrani, H. & Daneshmand, P. R. Fuzzy Logic-Based Load-Frequency Control Concerning High Penetration of Wind Turbines. IEEE Systems Journal vol. 6 173–180 (2012) – 10.1109/jsyst.2011.2163028
  • Bevrani, H. & Hiyama, T. On Load–Frequency Regulation With Time Delays: Design and Real-Time Implementation. IEEE Transactions on Energy Conversion vol. 24 292–300 (2009) – 10.1109/tec.2008.2003205
  • Kumar, N. J. V. & Thameem Ansari, M. M. A new design of dual-mode Type-II fuzzy logic load frequency controller for interconnected power systems with parallel AC–DC tie-lines and superconducting magnetic energy storage unit. Energy vol. 89 118–137 (2015) – 10.1016/j.energy.2015.07.056
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Jiang, L., Yao, W., Wu, Q. H., Wen, J. Y. & Cheng, S. J. Delay-Dependent Stability for Load Frequency Control With Constant and Time-Varying Delays. IEEE Transactions on Power Systems vol. 27 932–941 (2012) – 10.1109/tpwrs.2011.2172821