A Lagrangian variational formulation for nonequilibrium thermodynamics
Authors
Abstract
We present a variational formulation for nonequilibrium thermodynamics which extends the Hamilton principle of mechanics to include irreversible processes. The variational formulation is based on the introduction of the concept of thermodynamic displacement. This concept makes possible the definition of a nonlinear nonholonomic constraint given by the expression of the entropy production associated to the irreversible processes involved, to which is naturally associated a variational constraint to be used in the variational formulation. We consider both discrete (i.e., finite dimensional) and continuum systems and illustrate the variational formulation with the example of the piston problem and the heat conducting viscous fluid.
Keywords
Nonequilibrium thermodynamics; Lagrangian system; variational principle; irreversible process; constraints
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 25–30
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.006
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Gay_Balmaz_2018,
title={{A Lagrangian variational formulation for nonequilibrium thermodynamics}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.006},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Gay-Balmaz, F. and Yoshimura, H.},
year={2018},
pages={25--30}
}
References
- Biot, A virtual dissipation principle and Lagrangian equations in non-linear irreversible thermodynamics, Acad. Roy. Belg. Bull. Cl. Sci. (1975)
- Biot, M. A. New Variational-Lagrangian Irreversible Thermodynamics with Application to Viscous Flow, Reaction–Diffusion, and Solid Mechanics. Advances in Applied Mechanics 1–91 (1984) doi:10.1016/s0065-2156(08)70042-5 – 10.1016/s0065-2156(08)70042-5
- Ebin, D. G. & Marsden, J. Groups of Diffeomorphisms and the Motion of an Incompressible Fluid. The Annals of Mathematics vol. 92 102 (1970) – 10.2307/1970699
- Fukagawa, H. & Fujitani, Y. A Variational Principle for Dissipative Fluid Dynamics. Progress of Theoretical Physics vol. 127 921–935 (2012) – 10.1143/ptp.127.921
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems. Journal of Geometry and Physics vol. 111 169–193 (2017) – 10.1016/j.geomphys.2016.08.018
- Gay-Balmaz, F. & Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems. Journal of Geometry and Physics vol. 111 194–212 (2017) – 10.1016/j.geomphys.2016.08.019
- Gay-Balmaz, F. & Yoshimura, H. A Variational Formulation of Nonequilibrium Thermodynamics for Discrete Open Systems with Mass and Heat Transfer. Entropy vol. 20 163 (2018) – 10.3390/e20030163
- Gruber, (1997)
- Gruber, C. Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston. European Journal of Physics vol. 20 259–266 (1999) – 10.1088/0143-0807/20/4/303
- A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences vol. 432 171–194 (1991) – 10.1098/rspa.1991.0012
- Holm, D. D., Marsden, J. E. & Ratiu, T. S. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories. Advances in Mathematics vol. 137 1–81 (1998) – 10.1006/aima.1998.1721
- Ichiyanagi, M. Variational principles of irreversible processes. Physics Reports vol. 243 125–182 (1994) – 10.1016/0370-1573(94)90052-3
- Lavenda, B. H. Thermodynamics of Irreversible Processes. (Macmillan Education UK, 1978). doi:10.1007/978-1-349-03254-9 – 10.1007/978-1-349-03254-9
- Marsden, J. E. & West, M. Discrete mechanics and variational integrators. Acta Numerica vol. 10 357–514 (2001) – 10.1017/s096249290100006x
- Onsager, Reciprocal relations in irreversible processes I, Phys. Rev. (1931)
- Onsager, Fluctuations and irreversible processes, Phys. Rev. (1953)
- Onsager, Fluctuations and irreversible processes II. Systems with kinetic energy. Phys. Rev. (1953)
- Podio-Guidugli, P. A virtual power format for thermomechanics. Continuum Mechanics and Thermodynamics vol. 20 479–487 (2009) – 10.1007/s00161-009-0093-5
- Stueckelberg, (1974)
- von Helmholtz, (1984)
- Ziegler, A possible generalization of Onsager’s theory. (1968)