Authors

A.J. van der Schaft, J. Wei

Abstract

We study a basic dynamical distribution network, modeled as a directed graph with storage variables corresponding to the vertices, and unknown but constant inflows and outflows. It is shown how standard PI-control, regulating the storage variables irrespective of the inflows and outflows, corresponds to associating with every edge of the graph a controller state variable, yielding a closed-loop port-Hamiltonian system. Furthermore, it will be shown how regulation is proved by modifying the total Hamiltonian of the port-Hamiltonian system into a Lyapunov function based on the vector of constant inflows and outflows. Subsequently, the results are extended to the case that the input variables are constrained, leading to non-smooth Lyapunov functions.

Keywords

consensus algorithms, directed graphs, non-smooth lyapunov function, pi controllers, port-hamiltonian systems, saturation

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2012
  • Volume: 45
  • Issue: 19
  • Pages: 24–29
  • Publisher: Elsevier BV
  • DOI: 10.3182/20120829-3-it-4022.00033
  • Note: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control

BibTeX

@article{van_der_Schaft_2012,
  title={{A Hamiltonian perspective on the control of dynamical distribution networks}},
  volume={45},
  ISSN={1474-6670},
  DOI={10.3182/20120829-3-it-4022.00033},
  number={19},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={van der Schaft, A.J. and Wei, J.},
  year={2012},
  pages={24--29}
}

Download the bib file

References

  • van der Schaft, (1996)
  • van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
  • van der Schaft, A. J. & Maschke, B. M. Conservation laws and open systems on higher-dimensional networks. 2008 47th IEEE Conference on Decision and Control 799–804 (2008) doi:10.1109/cdc.2008.4738952 – 10.1109/cdc.2008.4738952
  • van der Schaft, Model-Based Control: Bridging Rigorous Theory and Advanced Technology. (2009)
  • van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Dynamics on Graphs: Consensus and Coordination Control Algorithms. IFAC Proceedings Volumes 43, 175–178 (2010)10.3182/20100913-2-fr-4014.00012
  • Bollobás, B. Modern Graph Theory. Graduate Texts in Mathematics (Springer New York, 1998). doi:10.1007/978-1-4612-0619-4 – 10.1007/978-1-4612-0619-4
  • Jayawardhana, A class of port-controlled Hamiltonian systems. Decision and Control, 2005 and 2005 European Control Conference. CDCECC ‘05. 44th IEEE Conference on (2005)
  • Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters 56, 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
  • Shevitz, D. & Paden, B. Lyapunov stability theory of nonsmooth systems. IEEE Trans. Automat. Contr. 39, 1910–1914 (1994) – 10.1109/9.317122
  • Zelazo, D. & Mesbahi, M. Edge Agreement: Graph-Theoretic Performance Bounds and Passivity Analysis. IEEE Trans. Automat. Contr. 56, 544–555 (2011) – 10.1109/tac.2010.2056730
  • Blanchini, F., Miani, S. & Ukovich, W. Control of production-distribution systems with unknown inputs and system failures. IEEE Trans. Automat. Contr. 45, 1072–1081 (2000) – 10.1109/9.863593
  • Burger, M., Zelazo, D. & Allgower, F. Network clustering: A dynamical systems and saddle-point perspective. IEEE Conference on Decision and Control and European Control Conference 7825–7830 (2011) doi:10.1109/cdc.2011.6161045 – 10.1109/cdc.2011.6161045
  • Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE 95, 215–233 (2007) – 10.1109/jproc.2006.887293
  • Ren, W. On Consensus Algorithms for Double-Integrator Dynamics. IEEE Trans. Automat. Contr. 53, 1503–1509 (2008) – 10.1109/tac.2008.924961