A force regulation guaranteeing input‐to‐state stability for a robot manipulator in a potential field
Authors
Satoshi Satoh, Ryusuke Ebimoto, Masami Saeki
Abstract
This paper is concerned with the compliant force regulation for a robot manipulator interacting with a deformable environment described as a potential field. We extend the conventional result of the asymptotic force regulation based on the energy shaping method for a port‐Hamiltonian system. Additionally, we add an extra compensator and equip a modified integrator dynamics to the proposed controller in order to introduce sufficient degrees of freedom. Those degrees of freedom enable dealing with a wider class of disturbances, which are possibly time‐varying and appear in the dynamics of all the variables of the closed‐loop system. Moreover, first, we prove that the proposed controller achieves asymptotic force regulation at the desired position without disturbances. Second, we prove that the closed‐loop system with the proposed controller becomes input‐to‐state stable with respect to any bounded disturbances and guarantees that both the solution of the system and resultant interaction force remain bounded.
Citation
- Journal: IEEJ Transactions on Electrical and Electronic Engineering
- Year: 2017
- Volume: 12
- Issue: S2
- Pages:
- Publisher: Wiley
- DOI: 10.1002/tee.22565
BibTeX
@article{Satoh_2017,
title={{A force regulation guaranteeing input‐to‐state stability for a robot manipulator in a potential field}},
volume={12},
ISSN={1931-4981},
DOI={10.1002/tee.22565},
number={S2},
journal={IEEJ Transactions on Electrical and Electronic Engineering},
publisher={Wiley},
author={Satoh, Satoshi and Ebimoto, Ryusuke and Saeki, Masami},
year={2017}
}
References
- Slotine, J.-J. E. & Weiping Li. On the Adaptive Control of Robot Manipulators. The International Journal of Robotics Research vol. 6 49–59 (1987) – 10.1177/027836498700600303
- Wen, J. T. & Murphy, S. Stability analysis of position and force control for robot arms. IEEE Transactions on Automatic Control vol. 36 365–371 (1991) – 10.1109/9.73573
- Chiaverini, S., Siciliano, B. & Villani, L. Force/position regulation of compliant robot manipulators. IEEE Transactions on Automatic Control vol. 39 647–652 (1994) – 10.1109/9.280780
- Arimoto, S., Han, H.-Y., Cheah, C. C. & Kawamura, S. Extension of impedance matching to nonlinear dynamics of robotic tasks. Systems & Control Letters vol. 36 109–119 (1999) – 10.1016/s0167-6911(98)00084-x
- Navarro-Alarcon, D., Liu, Y.-H., Romero, J. G. & Li, P. Energy Shaping Methods for Asymptotic Force Regulation of Compliant Mechanical Systems. IEEE Transactions on Control Systems Technology vol. 22 2376–2383 (2014) – 10.1109/tcst.2014.2309659
- MaschkeB van derSchaftAJ.Port‐controlled Hamiltonian systems: modelling origins and system theoretic properties. InProceedings of the 2nd IFAC Symposium Nonlinear Control Systems 1992; 282–288.
- Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1996). doi:10.1007/3-540-76074-1 – 10.1007/3-540-76074-1
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Sontag, E. D. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control vol. 34 435–443 (1989) – 10.1109/9.28018
- Sontag, E. D. Input to State Stability: Basic Concepts and Results. Lecture Notes in Mathematics 163–220 (2008) doi:10.1007/978-3-540-77653-6_3 – 10.1007/978-3-540-77653-6_3
- Romero, J. G., Navarro-Alarcon, D. & Panteley, E. Robust globally exponentially stable control for mechanical systems in free/constrained-motion tasks. 52nd IEEE Conference on Decision and Control 3067–3072 (2013) doi:10.1109/cdc.2013.6760350 – 10.1109/cdc.2013.6760350
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Khalil HK. Nonlinear Systems (1996)
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Yoshizawa T. Stability Theory by Lyapunov’s Second Method (1966)
- LaSalle, J. P. Stability theory for ordinary differential equations. Journal of Differential Equations vol. 4 57–65 (1968) – 10.1016/0022-0396(68)90048-x