A Case Study of Port-Hamiltonian Systems With a Moving Interface
Authors
Alexander Kilian, Bernhard Maschke, Andrii Mironchenko, Fabian Wirth
Abstract
We model two systems of two conservation laws defined on complementary spatial intervals and coupled by a moving interface as a single non-autonomous port-Hamiltonian system, and provide sufficient conditions for its Kato-stability. An example shows that these conditions are quite restrictive. The more general question under which conditions an evolution family is generated remains open.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2023
- Volume: 7
- Issue:
- Pages: 1572–1577
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2023.3272171
BibTeX
@article{Kilian_2023,
title={{A Case Study of Port-Hamiltonian Systems With a Moving Interface}},
volume={7},
ISSN={2475-1456},
DOI={10.1109/lcsys.2023.3272171},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Kilian, Alexander and Maschke, Bernhard and Mironchenko, Andrii and Wirth, Fabian},
year={2023},
pages={1572--1577}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1978). doi:10.1007/978-1-4757-1693-1 – 10.1007/978-1-4757-1693-1
- Curtain, R. & Zwart, H. Introduction to Infinite-Dimensional Systems Theory. Texts in Applied Mathematics (Springer New York, 2020). doi:10.1007/978-1-0716-0590-5 – 10.1007/978-1-0716-0590-5
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Kilian, Infinite-dimensional port-Hamiltonian systems with a stationary interface. arXiv:2301.08967 (2023)
- Kilian, Infinite-dimensional port-Hamiltonian systems with a moving interface. (2022)
- Diagne, M. & Maschke, B. Port Hamiltonian formulation of a system of two conservation laws with a moving interface. European Journal of Control vol. 19 495–504 (2013) – 10.1016/j.ejcon.2013.09.001
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences (Springer New York, 1983). doi:10.1007/978-1-4612-5561-1 – 10.1007/978-1-4612-5561-1
- Engel, K.-J. & Nagel, R. One-parameter semigroups for linear evolution equations. Semigroup Forum vol. 63 278–280 (2001) – 10.1007/s002330010042
- Datko, R. An extension of a theorem of A. M. Lyapunov to semi-groups of operators. Journal of Mathematical Analysis and Applications vol. 24 290–295 (1968) – 10.1016/0022-247x(68)90030-9
- Teschl, G. Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics (2012) doi:10.1090/gsm/140 – 10.1090/gsm/140
- KOBAYASI, K. On a theorem for linear evolution equations of hyperbolic type. Journal of the Mathematical Society of Japan vol. 31 (1979) – 10.2969/jmsj/03140647
- Nickel, G. & Schnaubelt, R. AN EXTENSION OF KATO’S STABILITY CONDITION FOR NONAUTONOMOUS CAUCHY PROBLEMS. Taiwanese Journal of Mathematics vol. 2 (1998) – 10.11650/twjm/1500407019
- Crank, Free and Moving Boundary Problems (1984)
- Prüss, J. & Simonett, G. Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics (Springer International Publishing, 2016). doi:10.1007/978-3-319-27698-4 – 10.1007/978-3-319-27698-4
- Wurm, J., Mayer, L. & Woittennek, F. Feedback control of water waves in a tube with moving boundary. European Journal of Control vol. 62 151–157 (2021) – 10.1016/j.ejcon.2021.06.016