Well-Posedness of Time-Varying Linear Systems
Authors
Abstract
In this article, we give easily verifiable sufficient conditions for two classes of perturbed linear, passive partial differential equation (PDE) systems to be well-posed, and we provide an energy inequality for the perturbed systems. Our conditions are in terms of smoothness of the operator functions that describe the multiplicative and additive perturbations, and here, well-posedness essentially means that the time-varying systems have strongly continuous Lax–Phillips evolution families. A time-varying wave equation with a bounded multidimensional Lipschitz domain is used as illustration, and as a part of the example, we show that the time-invariant wave equation is a “physically motivated” scattering-passive system in the sense of Staffans and Weiss. The theory also applies to time-varying port-Hamiltonian systems.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2020
- Volume: 65
- Issue: 10
- Pages: 4075–4089
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2019.2954794
BibTeX
@article{Kurula_2020,
title={{Well-Posedness of Time-Varying Linear Systems}},
volume={65},
ISSN={2334-3303},
DOI={10.1109/tac.2019.2954794},
number={10},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Kurula, Mikael},
year={2020},
pages={4075--4089}
}
References
- Paunonen, L. & Pohjolainen, S. Periodic output regulation for distributed parameter systems. Mathematics of Control, Signals, and Systems vol. 24 403–441 (2012) – 10.1007/s00498-012-0087-x
- Staffans, O. Well-Posed Linear Systems. (2005) doi:10.1017/cbo9780511543197 – 10.1017/cbo9780511543197
- engel, One-Parameter Semigroups for Linear Evolution Equations (2000)
- Malinen, J., Staffans, O. & Weiss, G. When is a linear system conservative? Quarterly of Applied Mathematics vol. 64 61–91 (2006) – 10.1090/s0033-569x-06-00994-7
- rudin, Functional Analysis (1973)
- tanabe, Equations of Evolution (1979)
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences (Springer New York, 1983). doi:10.1007/978-1-4612-5561-1 – 10.1007/978-1-4612-5561-1
- Howland, J. S. Stationary scattering theory for time-dependent Hamiltonians. Mathematische Annalen vol. 207 315–335 (1974) – 10.1007/bf01351346
- Chicone, C. & Latushkin, Y. Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical Surveys and Monographs (1999) doi:10.1090/surv/070 – 10.1090/surv/070
- Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1978). doi:10.1007/bfb0006761 – 10.1007/bfb0006761
- Staffans, O. J. & Weiss, G. A Physically Motivated Class of Scattering Passive Linear Systems. SIAM Journal on Control and Optimization vol. 50 3083–3112 (2012) – 10.1137/110846403
- kurula, Linear wave systems on $n$-D spatial domains. Int J Control (2015)
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Weiss, G. & Staffans, O. J. Maxwell’s Equations as a Scattering Passive Linear System. SIAM Journal on Control and Optimization vol. 51 3722–3756 (2013) – 10.1137/120869444
- Jacob, B. & Laasri, H. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory vol. 10 385–409 (2021) – 10.3934/eect.2020072
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Chen, J.-H. & Weiss, G. Time-varying additive perturbations of well-posed linear systems. Mathematics of Control, Signals, and Systems vol. 27 149–185 (2014) – 10.1007/s00498-014-0136-8
- Schnaubelt, R. & Weiss, G. Two classes of passive time-varying well-posed linear systems. Mathematics of Control, Signals, and Systems vol. 21 265–301 (2010) – 10.1007/s00498-010-0049-0
- Paunonen, L. Robust Output Regulation for Continuous-Time Periodic Systems. IEEE Transactions on Automatic Control vol. 62 4363–4375 (2017) – 10.1109/tac.2017.2654968
- dautray, Mathematical Analysis and Numerical Methods for Science and Technology Vol 3 (1990)
- Malinen, J. & Staffans, O. J. Conservative boundary control systems. Journal of Differential Equations vol. 231 290–312 (2006) – 10.1016/j.jde.2006.05.012
- Tucsnak, M. & Weiss, G. Observation and Control for Operator Semigroups. (Birkhäuser Basel, 2009). doi:10.1007/978-3-7643-8994-9 – 10.1007/978-3-7643-8994-9