Symplectic discretization of Port Controlled Hamiltonian systems
Authors
Laurent Lefevre, Silviu Medianu
Abstract
In this paper, a time-discretization framework is proposed for Port Controlled Hamiltonian (PCH) systems using combined discretization rules for the flows and efforts, which preserves the continuous-time structure. As examples for this formulation, three symplectic time-discretization schemes are presented, using classic discretization rules (implicit/explicit Euler, implicit mid-point and implicit trapezoidal), for the flows and efforts. As continuous-time model for exemplification using this framework, a linear capacitor microphone circuit is selected.
Keywords
symplectic discretization; Port Controlled Hamiltonian systems; discrete-time systems; linear systems; nonlinear systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2017
- Volume: 50
- Issue: 1
- Pages: 3629–3634
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2017.08.708
- Note: 20th IFAC World Congress
BibTeX
@article{Lefevre_2017,
title={{Symplectic discretization of Port Controlled Hamiltonian systems}},
volume={50},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2017.08.708},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Lefevre, Laurent and Medianu, Silviu},
year={2017},
pages={3629--3634}
}
References
- Aoues, S., Eberard, D. & Marquis-Favre, W. Canonical interconnection of discrete linear port-Hamiltonian systems. 52nd IEEE Conference on Decision and Control 3166–3171 (2013) doi:10.1109/cdc.2013.6760366 – 10.1109/cdc.2013.6760366
- Aoues, Control of a flexible spacecraft using discrete IDA-PBC design, 5thIFAC Workshop on Lagrangian and Hamiltonian methods for nonlinear control (2015)
- Hairer, (2006)
- Marsden, Discrete mechanics and variational integrators, A cta Numerica (2001)
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Maschke, B. M. & van der Schaft, A. J. Interconnection of systems: the network paradigm. Proceedings of 35th IEEE Conference on Decision and Control vol. 1 207–212 – 10.1109/cdc.1996.574297
- Talasila, V., Clemente-Gallardo, J. & Schaft, A. J. van der. Geometry and Hamiltonian mechanics on discrete spaces. Journal of Physics A: Mathematical and General vol. 37 9705–9734 (2004) – 10.1088/0305-4470/37/41/008
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Van der Schaft, Port Hamiltonian systems theory: An introductory overview (2014)
- Vu, Geometric discretization for a plasma control model, 5th IFAC Symposium on System Structure and Control (2013)