Suppression of Wave Disturbances and Tracking Control for Marine Systems
Authors
Justin M. Kennedy, Alejandro Donaire, Jason J. Ford, Francis Valentinis
Abstract
Rejecting wave disturbances is critical to the safe and efficient operation of marine vehicles at sea. In this paper, we use a port-Hamiltonian representation of marine vehicles to develop a passivity-based controller for the suppression of unknown input wave disturbances using a harmonic representation while tracking a time varying reference signal. Our controller is an extension of the tracking controller of [1], with the addition of the input disturbance suppression using an internal model unit from [2]. We show exponential stability for the tracking controller, and utilise Barbalat’s Lemma to show that all the signals in the input disturbance suppression controller are bounded. We illustrate our results through simulations.
Citation
- Journal: 2019 IEEE 58th Conference on Decision and Control (CDC)
- Year: 2019
- Volume:
- Issue:
- Pages: 8296–8302
- Publisher: IEEE
- DOI: 10.1109/cdc40024.2019.9029664
BibTeX
@inproceedings{Kennedy_2019,
title={{Suppression of Wave Disturbances and Tracking Control for Marine Systems}},
DOI={10.1109/cdc40024.2019.9029664},
booktitle={{2019 IEEE 58th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Kennedy, Justin M. and Donaire, Alejandro and Ford, Jason J. and Valentinis, Francis},
year={2019},
pages={8296--8302}
}
References
- Værnø, S. A., Skjetne, R., Kjerstad, Ø. K. & Calabrò, V. Comparison of control design models and observers for dynamic positioning of surface vessels. Control Engineering Practice 85, 235–245 (2019) – 10.1016/j.conengprac.2019.01.015
- Bonivento, C., Gentili, L. & Paoli, A. Internal model based fault tolerant control of a robot manipulator. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 5260-5265 Vol.5 (2004) doi:10.1109/cdc.2004.1429643 – 10.1109/cdc.2004.1429643
- Bonivento, C., Isidori, A., Marconi, L. & Paoli, A. Implicit fault-tolerant control: application to induction motors. Automatica 40, 355–371 (2004) – 10.1016/j.automatica.2003.10.003
- Forni, P., Lopes, G. A. D. & Jeltsema, D. Adaptive trajectory tracking and rejection of sinusoidal disturbances with unknown frequencies for uncertain mechanical systems. 2015 54th IEEE Conference on Decision and Control (CDC) 7622–7627 (2015) doi:10.1109/cdc.2015.7403424 – 10.1109/cdc.2015.7403424
- khalil, Nonlinear Systems (2002)
- slotine, Applied nonlinear control (1991)
- denis, On the Motions of Ships in Confused Seas. Transactions Society of Naval Architects and Marine Engineers (1953)
- perez, Ship Motion Control ser Advances in Industrial Control (2005)
- Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
- faltinsen, Sea Loads on Ships and Offshore Structures (1990)
- Loria, A., Fossen, T. I. & Panteley, E. A separation principle for dynamic positioning of ships: theoretical and experimental results. IEEE Trans. Contr. Syst. Technol. 8, 332–343 (2000) – 10.1109/87.826804
- Kalman filtering for positioning and heading control of ships and offshore rigs. IEEE Control Syst. 29, 32–46 (2009) – 10.1109/mcs.2009.934408
- Gentili, L., Paoli, A. & Bonivento, C. Input Disturbance Suppression for Port-Hamiltonian Systems: An Internal Model Approach. Lecture Notes in Control and Information Sciences 85–98 doi:10.1007/978-3-540-70701-1_5 – 10.1007/978-3-540-70701-1_5
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute 354, 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Fossen, T. I. & Strand, J. P. Passive nonlinear observer design for ships using lyapunov methods: full-scale experiments with a supply vessel. Automatica 35, 3–16 (1999) – 10.1016/s0005-1098(98)00121-6