Structural identifiability of linear lossy Port Controlled Hamiltonian systems
Authors
Ciprian Lupu, Dumitru Popescu, Silviu Medianu, Laurent Lefevre
Abstract
The structural identifiability analysis of linear lossy Port Controlled Hamiltonian(PCH) systems is proposed in this paper, by means of the observability and controllability concepts, which characterize a dynamic system. A general result is proved and proposed for the observability of linear lossy PCH systems. As example for the structural identifiability analysis, a DC motor is considered.
Citation
- Journal: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC)
- Year: 2016
- Volume:
- Issue:
- Pages: 738–743
- Publisher: IEEE
- DOI: 10.1109/icstcc.2016.7790755
BibTeX
@inproceedings{Lupu_2016,
title={{Structural identifiability of linear lossy Port Controlled Hamiltonian systems}},
DOI={10.1109/icstcc.2016.7790755},
booktitle={{2016 20th International Conference on System Theory, Control and Computing (ICSTCC)}},
publisher={IEEE},
author={Lupu, Ciprian and Popescu, Dumitru and Medianu, Silviu and Lefevre, Laurent},
year={2016},
pages={738--743}
}
References
- ljung, System Identification Theory for the User (1999)
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Denis-Vidal, L. & Joly-Blanchard, G. An easy to check criterion for (un)indentifiability of uncontrolled systems and its applications. IEEE Trans. Automat. Contr. 45, 768–771 (2000) – 10.1109/9.847119
- Anderson, D. H. Compartmental Modeling and Tracer Kinetics. Lecture Notes in Biomathematics (Springer Berlin Heidelberg, 1983). doi:10.1007/978-3-642-51861-4 – 10.1007/978-3-642-51861-4
- Walter, E., Braems, I., Jaulin, L. & Kieffer, M. Guaranteed Numerical Computation as an Alternative to Computer Algebra for Testing Models for Identifiability. Lecture Notes in Computer Science 124–131 (2004) doi:10.1007/978-3-540-24738-8_7 – 10.1007/978-3-540-24738-8_7
- soderstrom, System Identification (1989)
- maschke, Port-Controlled-Hamiltonian systems: modelling origins and system theoretic properties. Proc of the IFAC Int Symp on Non Cont Syst Design (1992)
- Pohjanpalo, H. System identifiability based on the power series expansion of the solution. Mathematical Biosciences 41, 21–33 (1978) – 10.1016/0025-5564(78)90063-9
- Miao, H., Xia, X., Perelson, A. S. & Wu, H. On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics. SIAM Rev. 53, 3–39 (2011) – 10.1137/090757009
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Walter, E. & Lecourtier, Y. Unidentifiable compartmental models: what to do? Mathematical Biosciences 56, 1–25 (1981) – 10.1016/0025-5564(81)90025-0
- Bellman, R. & Åström, K. J. On structural identifiability. Mathematical Biosciences 7, 329–339 (1970) – 10.1016/0025-5564(70)90132-x