Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework
Authors
Markus Clemens, Marvin-Lucas Henkel, Fotios Kasolis, Michael Günther
Abstract
Electromagneto-quasistatic (EMQS) field formulations allow to model resistive, capacitive, and inductive field effects while neglecting wave propagation. These field formulations are based on the Darwin–Ampére equation and yield different approximations of the full set of Maxwell’s equations depending on the choice of additional equations. Various discrete EMQS formulations are analyzed using the port-Hamiltonian system framework. It is shown that several symmetric EMQS formulations, e.g., combinations of the Darwin–Ampére equation and the Maxwell continuity equation, yield port-Hamiltonian differential-algebraic equation (pH-DAE) systems, which implies their numerical stability, energy conservation related to a specific EMQS variant of the Hamiltonian and dissipativity results.
Citation
- Journal: IEEE Transactions on Magnetics
- Year: 2025
- Volume: 61
- Issue: 1
- Pages: 1–4
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tmag.2024.3498593
BibTeX
@article{Clemens_2025,
title={{Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework}},
volume={61},
ISSN={1941-0069},
DOI={10.1109/tmag.2024.3498593},
number={1},
journal={IEEE Transactions on Magnetics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Clemens, Markus and Henkel, Marvin-Lucas and Kasolis, Fotios and Günther, Michael},
year={2025},
pages={1--4}
}
References
- Pourkeivannour, S., van Zwieten, J. S. B., Iwai, K. & Curti, M. A light Darwin implementation of Maxwell’s equations to quantify resistive, inductive, and capacitive couplings in windings. AIP Advances vol. 14 (2024) – 10.1063/5.0199294
- Hou, X. et al. Electromagnetic Field Analysis on Ringing Phenomenon of Inductor Driven by Inverter Considering Stray Capacitance. 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers) 1–2 (2023) doi:10.1109/intermagshortpapers58606.2023.10228667 – 10.1109/intermagshortpapers58606.2023.10228667
- Badics, Z., Pavo, J., Bilicz, S. & Gyimothy, S. Subdomain Perturbation Finite-Element Method for Quasi-static Darwin Approximation. IEEE Transactions on Magnetics vol. 56 1–4 (2020) – 10.1109/tmag.2019.2951066
- Darwin, C. G. LI. The dynamical motions of charged particles. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science vol. 39 537–551 (1920) – 10.1080/14786440508636066
- Koch, S., Schneider, H. & Weiland, T. A Low-Frequency Approximation to the Maxwell Equations Simultaneously Considering Inductive and Capacitive Phenomena. IEEE Transactions on Magnetics vol. 48 511–514 (2012) – 10.1109/tmag.2011.2173163
- Henkel, M.-L., Kasolis, F. & Clemens, M. A Gradient-Divergence Operator-Regularized Electromagneto-Quasistatic Field Formulation. IEEE Transactions on Magnetics vol. 60 1–4 (2024) – 10.1109/tmag.2023.3333943
- Kaimori, H., Mifune, T. & Kameari, A. Investigation of Darwin Model with Two Types of Coulomb Gauge Condition in Frequency-Domain Electromagnetic Finite-Element Method. Mathematics in Industry 463–469 (2022) doi:10.1007/978-3-031-11818-0_60 – 10.1007/978-3-031-11818-0_60
- Henkel, M.-L., Kasolis, F., Clemens, M., Gunther, M. & Schops, S. Implicit Gauging of Electromagneto-Quasistatic Field Formulations. IEEE Transactions on Magnetics vol. 58 1–4 (2022) – 10.1109/tmag.2022.3187869
- WEILAND, T. TIME DOMAIN ELECTROMAGNETIC FIELD COMPUTATION WITH FINITE DIFFERENCE METHODS. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields vol. 9 295–319 (1996) – 10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8
- Zhao, Y. & Tang, Z. A Novel Gauged Potential Formulation for 3-D Electromagnetic Field Analysis Including Both Inductive and Capacitive Effects. IEEE Transactions on Magnetics vol. 55 1–5 (2019) – 10.1109/tmag.2019.2899288
- Badics, Z., Pávó, J., Bilicz, S. & Gyimóthy, S. Finite-Element A-V Formulation for EMQS Problems via Two-Domain Continuity Gauging. IEEE Transactions on Magnetics vol. 59 1–4 (2023) – 10.1109/tmag.2023.3244722
- Kaimori, H., Mifune, T., Kameari, A. & Wakao, S. Low-Frequency Stabilized Formulations of Darwin Model in Time-Domain Electromagnetic Finite-Element Method. IEEE Transactions on Magnetics vol. 60 1–5 (2024) – 10.1109/tmag.2023.3304998
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Bartel, A., Clemens, M., Günther, M., Jacob, B. & Reis, T. Port-Hamiltonian Systems’ Modelling in Electrical Engineering. Mathematics in Industry 133–143 (2024) doi:10.1007/978-3-031-54517-7_15 – 10.1007/978-3-031-54517-7_15
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180